摘要:
There is disclosed a coupling structure of optical fibers and optical waveguides, comprising optical fibers; an optical fiber arranging connector having a first and second members, the optical fibers being sandwiched by the first and second members to be fixed in the optical fiber arranging connector; a waveguide device having a waveguide substrate, optical waveguides being formed on a surface of the waveguide device, ends of the waveguides and ends of being aligned with each other by abutting end faces thereof against each other; an adhesive interposed and set between said end faces, the adhesive being a photo-setting adhesive, the first member being made of a material preventing light having a wavelength capable of setting said adhesive from passing therethrough, and in at least part of a region where the end faces of the optical fiber arranging connector and the waveguide device oppose to each other, at least one of the optical fiber arranging connector and the waveguide device in the vicinity of the end face thereof being made of a light-transmitting material through which light having a wavelength capable of setting the adhesive can pass.
摘要:
This invention relates to an optical waveguide module having stable temperature characteristics and moist heat characteristics even in a severe environment. This optical waveguide module includes a waveguide component having an optical waveguide on a waveguide substrate made of silicon or silica glass as the first material, and a ferrule made of a plastic material as the second material. An end face of an optical fiber is fixed by adhesion while it is inserted in a through hole of the ferrule, the through hole having a continuous inner wall. This ferrule is fixed with an adhesive having a predetermined strength so that its the end face opposes the end face of the waveguide component. The second material satisfies a relationship:.vertline..DELTA.L/(E.sub.1 /E.sub.2).vertline.
摘要:
An optical device module comprises a module body including an optical device, a first fiber connector holding a first optical fiber, coupled to one end of the optical device, and a second fiber connector holding a second optical fiber, coupled to the other end of the optical device; and an enclosure body integrally molded with a resin such as an epoxy resin, an urethan resin to coat the module body. Almost the whole module body is coated with the integrally molded epoxy resin, so that the module body is protected efficiently from external heat, moisture, mechanical shock etc.
摘要:
The present invention relates to a package in which an optical waveguide module is mounted, at least having such structure as to reduce influence of expansion or contraction (thermal stress) of a metal housing, caused with a temperature change of the external environment and applied on junction parts between an optical waveguide substrate and members for fixedly supporting tip portions of input and output optical fibers. This package comprises a cavity for housing the whole of the optical waveguide module as covered with a buffer protection material, and a metal housing having through holes for leading the above optical fibers to the outside. Particularly, the optical fibers and the through holes are bonded and secured with a filler having higher airtightness than the buffer protection material and having a lower tensile modulus than a metal material forming the housing.
摘要:
In the method for forming an optical waveguide according to this invention, an optical waveguide comprising a core of quartz as a main component, and a cladding layers surrounding the core is formed by deposition of glass fine particles by flame hydrolysis deposition and vitrifying the glass fine particle layers. This method includes a step of transiently increasing a feed amount of phosphorus to a flame burner in forming glass fine particle layers to be the cladding layers. Feeding phosphorus in this step for the first time after a glass fine particle layer is deposited without feeding phosphorus to the flame burner, whereby generation of foreign objects near the core dan be suppressed. The method for fabricating an optical waveguide according to this invention is for fabricating a core 132a or cladding layers 122 142 surrounding the core 132a by flame hydrolysis deposition and is characterized in that the glass fine particle layers are vitrified after the deposition of the phosphorus-content glass fine particle layer, whereby glass films 122a, 122b with a thickness of below 10 .mu.m are formed. This glass film forming step is repeated twice or more times to form the core or the glass layers to be the cladding layers surrounding the core. This invention can suppress inhomogeneous vitrified films and especially can make phosphorus concentrations in the cladding layers uniform. As a result, prapagation losses can be made small.
摘要:
A process for forming film structure using Flame Hydrolysis Deposition (FHD) in which (1) glass soot is deposited on a substrate via FHD to form a first porous vitreous layer having a first bulk density, (2) a second porous vitreous layer having a second bulk density that is larger than the first bulk density is formed from a portion of the first porous vitreous layer, and (3) a third porous vitreous layer having a third bulk density is formed by depositing glass soot containing a refractive index increasing dopant on the second porous vitreous layer by FHD. The first, second and third porous vitreous layers are then heated to form an undercladding layer and a core layer, the undercladding layer being formed from the first and second porous vitreous layers and the core layer being formed from the third porous vitreous layer.
摘要:
In the first step, a fuel and raw material gases are fed to burner while flames from the burner scan a Si substrate. Synthesized fine glass particles are deposited on the substrate to form a first porous vitreous layer to be an under cladding layer. In the second step, the first porous vitreous layer is heated by the flames. A bulk density of an upper part of the first porous vitreous layer is raised to 0.3 g/cm.sup.3. Having a raised bulk density, this upper part functions as a shield layer against GeO.sub.2. In the third step, a second porous vitreous layer, to be a core layer, is deposited uniformly on the first porous vitreous layer. In the fourth step, the first and the second porous vitreous layers are sintered. In this case, the shield layer with a higher bulk density hinders the GeO.sub.2 component which has evaporated from the second porous vitreous layer from diffusing into the first porous vitreous layer.
摘要:
This invention relates to a sintering furnace for the production of a quartz preform which can be used for carrying out dehydration, fluorine-addition and/or sintering of a porous quartz soot preform prepared by a flame hydrolysis method such as a VAD method or a OVD method, and in particular, to such a furnace in which joints in a long furnace muffle so long that fabricating it as open body is impossible can be maintained fully gas-tight, so that it is possible to prevent H.sub.2 O, O.sub.2 and other impurities in the air from entering the muffle from outside, and corrosive and poisonous gases in the muffle are prevented from leakage to outside the muffle. This sintering furnace has a muffle of high purity carbon, the inner wall and/or outer wall of which is coated with a gas-impermeable film, which muffle is a cylinder with an axis in the longitudinal direction and divided into a plurality of parts in the longitudinal direction, the parts each having the upper and lower ends finished so as to be flat and abutting adjacent parts sealed by a carbon gasket between them, and further has an air cylinder for pressing the parts together in the axial direction with a uniform force around the circumference of the muffle.
摘要:
A control system of a lockup clutch of a torque converter of a vehicle automatic transmission. A basic manipulated variable is determined in response to the vehicle operating condition in accordance with a predetermined characteristic, and the lockup clutch engaging force is controlled in response to the variable. In the system, fuzzy reasoning is carried out using the detected vehicle operating parameters to correct the basic manipulated variable, and the engaging force is controlled in response to the corrected manipulated variable, when the control condition is met. The corrected manipulated variable is gradually decreased with respect to time when the vehicle driving state has shifted from a region in which the engaging force is controlled in response to the corrected manipulated variable to a region in which the lockup clutch is disengaged. In addition, the corrected manipulated variable is gradually increased when the vehicle driving state has shifted from a region in which the lockup clutch is disengaged to a region in which the engaging force is controlled in response to the corrected manipulated variable.