摘要:
This invention provides a light absorber which can be used for optical equipment like optical-disk equipment and a liquid crystal display. The light absorber has a layered structure including a light absorbing layer and a transparent layer. The light absorbing layer absorbs a reflected light from the inside of the absorber as well as incident light into the absorber while the transparent layer helps attenuate the reflected light by interference of light. One of the light absorbing layers which is thicker than others may work as a shading layer for the incident light.
摘要:
A prism and an optical pickup employing such prism includes a parallel prism having a polarization beam splitter film and a reflection film. The polarization beam splitter film is formed on an angled plane of a glass material having an approximate parallelogram cross-section, and consists of a multi-layer film of a composite film made of Si and SiO.sub.2-x (x
摘要:
An optical head has a light source; luminous flux splitting means for splitting radiation luminous flux of linearly polarized light radiated from the light source into plural luminous fluxes without changing the luminous flux diameter substantially; a wavelength plate for polarizing at least one of the luminous fluxes split by the luminous flux splitting means into a nearly circularly polarized light as illumination luminous flux; an objective lens for converging the illumination luminous flux through the wavelength plate on an optical information medium and collecting the reflected light; and a photodetector for receiving the reflected luminous flux collected by the objective lens after passing through the wavelength plate and the luminous flux splitting means. The quantity of received light for maintaining the S/N ratio is sufficient for reproducing a high density optical disk and a conventional optical disk with a large birefringence.
摘要:
A multilayer film forming apparatus including a film forming chamber, a substrate on which a multilayer film is formed, an optical thickness monitoring substrate which controls an optical thickness of each layer of a multilayer film, a monitor exchange system which exchanges the optical thickness monitoring substrate for each layer and a multilayer film monitoring substrate which is disposed under the optical thickness monitoring substrate to observe spectral characteristics of the multilayer film. The invention also includes a light source which irradiates light to the optical thickness monitoring substrate and to the multilayer film monitoring substrate, an optical lens which reshapes the light radiated from the light source, an optical window which lets the light into and out of the film forming chamber, a detector which detects the light quantity reflected from the optical thickness monitoring substrate and a spectral characteristics evaluation device which measures spectral characteristics of the light reflected from the multilayer film monitoring substrate. The multilayer film monitoring substrate is fixed to a holding jig to prevent itself from inclining more than ten minutes against the disposed state.
摘要:
An optical head has a light source, luminous flux splitting means for splitting radiation luminous flux of linearly polarized light radiated from the light source into plural luminous fluxes, a wavelength plate for polarizing at least one of the luminous fluxes split by the luminous flux splitting means into a nearly circularly polarized light as illumination luminous flux, an objective lens for converging the illumination luminous flux on an optical information medium and collecting the reflected light, and a photo detector for receiving the reflected luminous flux, after passing through the wavelength plate and the luminous flux splitting means, wherein supposing a power efficiency when splitting the illumination luminous flux from the radiation luminous flux to be E1, a power efficiency when transmitting a polarized light component of the reflected luminous flux, the component being orthogonal to a direction of polarization of the illumination luminous flux, to the photo detector to be E2, and a power efficiency when transmitting a polarized light component of the reflected luminous flux, the component having substantially same direction as a direction of polarization of the illumination luminous flux, to the photo detector to be E3, the E2 is larger than the E1 and the E1.times.E3 is such amount that can be detected by the photo detector.
摘要:
A method of and an apparatus for forming a multi-layer film, includes: a thickness control device for controlling an optical film thickness or a thickness of each of the layers of the multi-layer film; a multi-layer film monitoring substrate on which the multi-layer film is formed; a measurement device for measuring the optical characteristics of the multi-layer film formed on the multi-layer film monitoring substrate; and a processing device which processes the results obtained by the measurement device so as to feed the processed results back to the thickness control device.
摘要:
A diffraction grating lens according to the present invention includes a lens body and a diffraction grating provided on the surface of the lens body, the diffraction grating including a plurality of annular zones having slopes inclined along a width direction and a plurality of step surfaces respectively located between the plurality of annular zones. At least one of the plurality of annular zones is light-transmissive across its entire area along the width direction, and in the at least one annular zone, a light transmittance near at least one of two ends along the width direction is smaller than a light transmittance near a central portion along the width direction.
摘要:
An imaging device includes: a lens optical system including a first region and a second region having different optical properties; an imaging element including first pixels and second pixels; an arrayed optical element which is provided between the lens optical system and the imaging element, allows light passing through the first region to enter the first pixels, and allows light passing through the second region to enter the second pixels; a signal processing unit configured to generate object information using pixel values obtained from the first pixels and the second pixels; and a diffractive optical element provided between the arrayed optical element and the lens optical system and including a diffraction grating symmetrical about an optical axis of the lens optical system.
摘要:
A diffractive lens 11 that includes: a lens base 18, which has a second surface 13 with first and second groups of diffraction grating portions 20 and 21; and a protective coating 17, which is arranged on the first group of diffraction grating portions 20. The first group of diffraction grating portions 20 has a first group of diffraction steps and the second group of diffraction grating portions 21 has a second group of diffraction steps, which is lower in height than the first group of diffraction steps. One of the respective materials of the base 18 and the protective coating 17 has a higher refractive index and a greater Abbe number than the other material. And the second group of diffraction steps is not covered with the protective coating 17.
摘要:
A measurement method and an evaluating apparatus are provided which accurately evaluate the light amount of a spot beam, the diffraction efficiency, and the intensity distribution in the optical axis direction by detecting even a weak diffracted beam in an arbitrary wavelength range converged by a diffraction optical element as an imaging lens. Light emitted from a white light source passes through a wavelength band-pass filter and is diaphragmed by a pinhole slit. The resultant light is paralleled by a collimator lens and enters a diffraction optical element as an imaging lens. The light getting out from the diffraction optical element is converged to be a spot beam, is magnified by a microscope 18, and is then projected on a CCD. A distance changing member changes the distance between the CCD and the diffraction optical element, and then, the intensity distribution in the optical axis direction is measured.