Abstract:
A method for detecting cancer cells. A chemical luminescence reaction is used to obtain a result image. The result image is analyzed through a weighting process to a value of each gene. By doing do, a cancer can be precisely diagnosed.
Abstract:
The present invention is a method for a biochip detecting limited cells. The present invention comprises steps of: obtaining a nylon membrane chip having required nucleotide fragments arranged in a dot matrix way by using a manual spotter; naturally drying by heat and fixing the nucleotide fragments on the nylon membrane chip by a rapid nucleic acid cross-linker when preparing a chip; collecting some normal whole blood to be linearly amplified; synthesizing required amount of cDNA by a reverse transcription to obtain a marker as a probe; processing labeling, hybridization and post-hybridization to the chip and the marker; processing chemical color reaction; and automatically analyzing the result image after the chemical color reaction. Accordingly, a gene biochip operation technology platform with low cost, easy operation and high efficiency is obtained. And so the functions and the applications of the gene biochip can be effectively worked out and the practical applications of the gene biochip on related fields can be conclusively popularized.
Abstract:
A sample is diagnosed with a genechip array by the present disclosure. The sample is automatically diagnosed by devices revealed in the present disclosure for a fast diagnosis having high accuracy.
Abstract:
A diagnosis apparatus is provided. A gene chip having a target gene cluster is used with the apparatus. The target gene cluster comprises a plurality of target genes related to a cancer. Thus, a fast, accurate, sensitive and cheap WEnCA-Chipball platform is provided for mass analysis and automatic operation while human error and time for diagnosis are both reduced.
Abstract:
This invention relates to provide the genes for diagnosing colorectal cancer, the gene sequences searching comprise the steps of: (1) deriving epithelium cells from normal intestines, polypus of intestines and colorectal cancer tissue; (2) collecting genes with highly differential gene expression by Suppression Subtractive Hybridization (SSH), and building library; (3) deriving colonies with relatively high signal intensities from cancer tissue; (4) collecting more clinically cancer tissues by Northern Hybridization, real-time Polymerase Chain Reaction (PCR) combined with analysis of bioinformation to affirm variation between differential gene expression; and (5) selecting the most suitable genes from said library, and using the gene sequence as reagent provides the effects of early diagnosis, specificity, highly sensitivity and safety.
Abstract:
The present disclosure diagnoses mycobacterium tuberculosis, not mycobacterium tuberculosis complex only. Specific target genes are selected from regions of difference of mycobacterium tuberculosis. After hybridization with labeling substances, sputum samples are processed through color developments separately for obtaining images to be analyzed automatically. Thus, the present disclosure rapidly diagnoses mycobacterium tuberculosis in the sputum samples with a simple operation and a low cost.
Abstract:
This invention relates to provide the genes for diagnosing colorectal cancer, the gene sequences searching comprise the steps of: (1) deriving epithelium cells from normal intestines, polypus of intestines and colorectal cancer tissue; (2) collecting genes with highly differential gene expression by Suppression Subtractive Hybridization (SSH), and building library; (3) deriving colonies with relatively high signal intensities from cancer tissue; (4) collecting more clinically cancer tissues by Northern Hybridization, real-time Polymerase Chain Reaction (PCR) combined with analysis of bioinformation to affirm variation between differential gene expression; and (5) selecting the most suitable genes from said library, and using the gene sequence as reagent provides the effects of early diagnosis, specificity, highly sensitivity and safety.
Abstract:
A diagnosis apparatus is provided. A gene chip having a target gene cluster is used with the apparatus. The target gene cluster comprises a plurality of target genes related to a cancer. Thus, a fast, accurate, sensitive and cheap WEnCA-Chipball platform is provided for mass analysis and automatic operation while human error and time for diagnosis are both reduced.
Abstract:
The present invention is applied in fields like biological medicine and tissue engineering. A fluid control system in a cell isolation and culture system is used to automatically process sample preparation, circulating tumor cell (CTC) isolation, plate changing and cell culturing. By using the present invention, time and labor are saved; moreover, the present invention has a small size and is easily carried.
Abstract:
The present invention is apllied in fields like biological medicine and tissue engineering. A fluid control system in a cell isolation and culture system is used to automatically process sample preparation, circulating tumor cell (CTC) isolation, plate changing and cell culturing. By using the present invention, time and labor are saved; moreover, the present invention has a small size and is easily carried.