摘要:
The present invention relates to an illuminant, etc., having a high response speed and a high luminous intensity. The illuminant comprises a substrate and a nitride semiconductor layer provided on one surface of the substrate. The nitride semiconductor layer emits fluorescence in response to incidence of electrons. At least part of the emitted fluorescence passes through the substrate, and then exits from the other surface of the substrate. Generation of the fluorescence is caused by incidence of electrons onto a quantum well structure of the nitride semiconductor layer and recombination of pairs of electrons and holes generated due to electron incidence, and the response speed of fluorescence generation is on the order of nanoseconds or less. Also, the luminous intensity of the fluorescence becomes equivalent to that of a conventional P47 fluorescent substance. Namely, the illuminant has a response speed and a luminous intensity that are sufficient for adaptation to scanning electron microscopes and mass spectroscopes.
摘要:
A light-emitting body of rapid speed of response and high light emission intensity, and an electron beam detector, scanning electron microscope and mass spectroscope using this are provided. In the light-emitting body 10 according to the present invention, when fluorescence is emitted by a nitride semiconductor layer 14 formed on one face 12a of a substrate 12 in response to incidence of electrons, at least some of this fluorescence is transmitted through this substrate 12, whereby that fluorescence is emitted from the other face 12b of the substrate. The response speed of this fluorescence is not more than μsec order. Also, the intensity of emission of this fluorescence is almost identical to that of a conventional P47 phosphor. Specifically, with this light-emitting body 10, a response speed and light emission intensity are obtained that are fully satisfactory for application to a scanning electron microscope or mass spectroscope. In addition, a cap layer 16 contributes to improvement in the persistence rate of light emission in the nitride semiconductor layer 14, so, with this light-emitting body 10, not only high-speed response and high light emission intensity are obtained, but also an excellent persistence rate.
摘要:
A light-emitting body of rapid speed of response and high light emission intensity, and an electron beam detector, scanning electron microscope and mass spectroscope using this are provided. In the light-emitting body 10 according to the present invention, when fluorescence is emitted by a nitride semiconductor layer 14 formed on one face 12a of a substrate 12 in response to incidence of electrons, at least some of this fluorescence is transmitted through this substrate 12, whereby that fluorescence is emitted from the other face 12b of the substrate. The response speed of this fluorescence is not more than μsec order. Also, the intensity of emission of this fluorescence is almost identical to that of a conventional P47 phosphor. Specifically, with this light-emitting body 10, a response speed and light emission intensity are obtained that are fully satisfactory for application to a scanning electron microscope or mass spectroscope. In addition, a cap layer 16 contributes to improvement in the persistence rate of light emission in the nitride semiconductor layer 14, so, with this light-emitting body 10, not only high-speed response and high light emission intensity are obtained, but also an excellent persistence rate.
摘要:
A light-emitting body of rapid speed of response and high light emission intensity, and an electron beam detector, scanning electron microscope and mass spectroscope using this are provided. In the light-emitting body 10 according to the present invention, when fluorescence is emitted by a nitride semiconductor layer 14 formed on one face 12a of a substrate 12 in response to incidence of electrons, at least some of this fluorescence is transmitted through this substrate 12, whereby that fluorescence is emitted from the other face 12b of the substrate. The response speed of this fluorescence is not more than μsec order. Also, the intensity of emission of this fluorescence is almost identical to that of a conventional P47 phosphor. Specifically, with this light-emitting body 10, a response speed and light emission intensity are obtained that are fully satisfactory for application to a scanning electron microscope or mass spectroscope. In addition, a cap layer 16 contributes to improvement in the persistence rate of light emission in the nitride semiconductor layer 14, so, with this light-emitting body 10, not only high-speed response and high light emission intensity are obtained, but also an excellent persistence rate.
摘要:
A gypsum wallboard or plasterboard having a high mechanical strength, especially high impact strength, and a large bulk density is prepared from a mixture consisting essentially of calcined gypsum, cellulosic fibers, asbestos fibers, a setting retardant for the calcined gypsum and water, by withdrawing solid components of the mixture in layer form. A plurality of the thus-obtained layers is piled to form a preform of the desired thickness and pressure-molding the preform under a molding pressure of from 10 to 400 kg/cm.sup.2 to obtain the board product.
摘要:
The invention relates to a totally enclosed type driving electric motor in which a stator core having a coil is attached to an inner peripheral portion of a frame, a bearing bracket supporting a bearing is attached to one end of the frame, a housing supporting a bearing is attached to another end of the frame, and a shaft of a rotor is rotatably supported by the first bearing and the second bearing. The totally enclosed type driving electric motor of the invention is provided with a cooling space near at least one of the first bearing and the second bearing.
摘要:
A thermal type air flow amount measuring apparatus is provided for measuring, a amount of air flowing in an air flow passage. The apparatus includes a bypass passage unit for bypassing a part of the air flowing through the air flow passage into the bypass passage. A flow amount measuring device is disposed in the bypass passage unit. A throttle unit is disposed upstream of the flow amount measuring device in the bypass passage unit and a support unit is disposed downstream over the throttle unit to support the flow amount measuring unit.
摘要:
A temperature detecting apparatus includes a support member made of resin and disposed in an air passage, a temperature sensor supported within the support member, and a pair of conductive members made of metal and embedded in the support member. The support member includes a surface in parallel with the intake air flow. The pair of conductive members are electrically connected to the temperature sensor. An extrusion portion is formed on the support member so as to extend along the intake air flow, and accommodates the temperature sensor at an upstream side thereof and the pair of conductive members. The conductive member includes a first extending portion extending within the extrusion portion along the air flow and a second extending portion extending from the first extending portion into the support member.
摘要:
A flow meter for measuring a flow rate of fluid includes a body providing a main passage through which the fluid flows. A plurality of support elements connect an inner wall surface of the body and a central element so as to support the central element substantially at the center of the main passage. An introducing port opens to the central element for introducing a part of the fluid flowing through the main passage. A branch passage is formed within the central element, through which such part of the fluid flows. A sensor is disposed within the branch passage for measuring a flow rate within the branch passage. An outlet opens to a portion of the central element located at upperstream of the downstream ends of the support elements for returning the fluid flowing through the branch passages to the main passage.
摘要:
An intake air flow detecting device is provided to an intake air passage, through which intake air flows into an internal combustion engine. Intake air flow is divided into a main passage and a bypass passage. The detecting device includes a thermal air flowmeter, a bypass flow delay information calculating means, and a response delay compensating means. The thermal air flowmeter includes a detector arranged in the bypass passage for detecting an air flow amount in the intake air passage. The bypass flow delay information calculating means calculates a bypass flow delay information representing delay in variation in a flow amount in the bypass passage with respect to variation in a flow amount in the main passage. The response delay compensating means compensates delay in response of the air flowmeter in accordance with the bypass flow delay information.