Abstract:
[Object] The invention is intended to provide a medical image processing apparatus in which improvement of accuracy of boundary detection of a heart is achieved.[Solving Means] A medical image processing apparatus acquires volume data of a heat, detects a three-dimensional left ventricle coordinate system composed of three axes including at least a left ventricle long axis of the heart from the volume data; uses a boundary model expressed in the left ventricle coordinate system and detects a left ventricle boundary from the volume data, and displays a cross-sectional image orthogonal to at least one axis of the three axes of the left ventricle coordinate system together with the detected left ventricle boundary on the cross-sectional image.
Abstract:
[Object] The invention is intended to provide a medical image processing apparatus in which improvement of accuracy of boundary detection of a heart is achieved.[Solving Means] A medical image processing apparatus acquires volume data of a heat, detects a three-dimensional left ventricle coordinate system composed of three axes including at least a left ventricle long axis of the heart from the volume data; uses a boundary model expressed in the left ventricle coordinate system and detects a left ventricle boundary from the volume data, and displays a cross-sectional image orthogonal to at least one axis of the three axes of the left ventricle coordinate system together with the detected left ventricle boundary on the cross-sectional image.
Abstract:
According to one embodiment, a MRI apparatus includes an acquisition unit, a reference section information calculating unit, a positioning unit and an imaging unit. The acquisition unit acquires frames of section image data including a heart from an object with use of magnetic resonance. The reference section information calculating unit calculates spatial positional information of a reference section of the heart based on the frames of the section image data. The positioning unit displays a reference section image of the heart on a display unit and performs positioning of an imaging part for imaging through the displayed reference section image of the heart. The reference section image is calculated from the frames of the section image data based on the positional information of the reference section. The imaging unit images the imaging part set by the positioning.
Abstract:
First magnetic resonance imaging (MRI) three-dimensional heart image data includes a plurality of two-dimensional heart image data superimposed and having a resolution in at least one direction that is different from that in two other directions. A first axis is detected in the three-dimensional heart image data. A first vector is calculated as passing through the first axis and having at least a predetermined resolution and generated image data on a plane passing through the first axis and the first vector is generated from the first imaging data. A second axis is detected relating to the heart from the generated image data, the second axis being a higher precision axis than the first axis.
Abstract:
First magnetic resonance imaging (MRI) three-dimensional heart image data includes a plurality of two-dimensional heart image data superimposed and having a resolution in at least one direction that is different from that in two other directions. A first axis is detected in the three-dimensional heart image data. A first vector is calculated as passing through the first axis and having at least a predetermined resolution and generated image data on a plane passing through the first axis and the first vector is generated from the first imaging data. A second axis is detected relating to the heart from the generated image data, the second axis being a higher precision axis than the first axis.
Abstract:
According to one embodiment, a three-dimensional image display apparatus includes a display unit and a generating unit. The display unit includes a two-dimensional image display device includes a display surface with a plurality of pixels arranged in a matrix, and a plurality of light ray control elements provided on the display surface of the two-dimensional image display device corresponding to the pixels. The generating unit generates an optimal elemental image by determining a value of at least one pixel from a weighted sum of values of at least two pixels of a generated image or an input image, and weights calculated based on light ray distributions indicating directions and scattering degrees of light rays from the light ray control elements. The display unit displays the optimal elemental image.
Abstract:
An image processing device includes an estimator, a first calculator, a selector, a determination module, and a third calculator. The estimator estimates a motion vector to reference images of an input video from a target pixel of a process target image. The first calculator calculates candidate pixel values corresponding to positions in the reference images. The selector selects a motion vector for which the error is small as many as the number smaller than the number of motion vectors acquired for the target pixel. The determination module determines the candidate pixel values corresponding to the selected motion vectors. The third calculator calculates a pixel value after correction of the target pixel from an arithmetic average or a weighted sum of the candidate pixel value determined equal to or less than the reference and the pixel value of the target pixel.
Abstract:
A medical image display apparatus according to an embodiment includes a display unit, a generating unit, and a display controlling unit. The display unit three-dimensionally displays a group of disparity images generated from three-dimensional medical image data. The generating unit determines a display position of the group of disparity images to be three-dimensionally displayed on the display unit in terms of a depth direction with respect to a display surface of the display unit and generates the group of disparity images from the three-dimensional medical image data so as to realize the determined display position. The display controlling unit three-dimensionally displays the group of disparity images and two-dimensionally displays a medical image different from the group of disparity images, on the display unit.
Abstract:
In a structure in which a printing medium is subjected to a maintenance ejection in order to maintain a favorable ink ejection performance of a printing head, dots formed on the printing medium by the maintenance ejection have a reduced visibility. Specifically, an area of dots formed by landing ink droplets ejected from the printing head for the maintenance ejection onto the printing medium is smaller than an area of similar dots formed by a normal printing. Specifically, by flowing currents having different waveforms into an ejection heater of the printing head depending on the ejection for printing an image and the maintenance ejection, an area of dots formed by the maintenance ejection can be smaller than an area of dots formed by the normal ejection for printing an image.
Abstract:
A method of a cleaning of an ejection face by supplying a head liquid on the face of an inkjet head provided with ink ejection openings and then by performing a wiping operation. Sufficient cleaning is achieved by appropriately specifying relative relationships among the surface tensions of the face, the ink and the head liquid, and by efficiently and surely removing an ink residue from the face. By supplying the head liquid to the ink residue on the face, both are mixed with each other, and thereby the ink residue is incorporated into the head liquid. In this respect, by using the ink and the head liquid both having a surface tension higher than that of the face, a wetting of a dissolved matter of the ink residue with respect to the face is reduced, and the dissolved matter of the ink residue is smoothly moved by the wiping operation.