摘要:
Embodiments include devices, systems and processes for using a white light interferometer (WLI) microscope with a tilted objective lens to perform in-line monitoring of both resist footing defects and conductive trace undercut defects. The defects may be detected at the interface between dry film resist (DFR) footings and conductive trace footing formed on insulating layer top surfaces of a packaging substrate. Such footing and undercut defects may other wise be considered “hidden defects”. Using the WLI microscope with a tilted objective lens provides a high-throughput and low cost metrology and tool for non-destructive, non-contact, in-line monitoring.
摘要:
A method including measuring a first distance to a surface of an integrated circuit substrate or a portion of an integrated circuit package by measuring an angle to it from two known points; introducing a material onto the surface; measuring a second distance to a surface of the film from the two known points; and determining a thickness of the introduced material by subtracting the second distance from the first distance.
摘要:
A method including measuring a first distance to a surface of an integrated circuit substrate or a portion of an integrated circuit package by measuring an angle to it from two known points; introducing a material onto the surface; measuring a second distance to a surface of the film from the two known points; and determining a thickness of the introduced material by subtracting the second distance from the first distance.
摘要:
A system for detecting a void in a photoresist layer can include: a detector, a processor, and a memory. The detector can be arranged to receive reflected light from a surface of a sample. The processor can be in electrical communication with the detector, The memory can store instructions that, when executed by the processor, can cause the processor to perform operations. The operations can comprise: receiving optical data from the detector, receiving calibrated data, and determining an existence of the void. the optical data can include information regarding a signature of the reflected light. The calibrated data can include information regarding a signature for a known sample of photoresist. The determination of the existence of the void can be based on a deviation of the optical data from the calibrated data.