摘要:
The color filter substrate has a functional region which includes a plurality of colored layers and which functions as a color filter selectively transmitting predetermined color light components and a non-functional region other than the functional region. The method includes discharging, onto a substrate, a liquid material, in which coloring materials constituting the colored layers are dissolved or dispersed into a solvent, with a liquid droplet discharge method. In the discharging of the liquid material, the liquid material is discharged onto the functional region and the liquid material or the solvent is discharged onto the non-functional region. The amount of the solvent discharged onto the non-functional region per unit area is larger than the amount of the solvent discharged onto the functional region per unit area.
摘要:
A bank section (112a, 112b) are formed between a plurality of electrodes (111) which are formed on the base body (2). A functional layer is formed on each electrode (111) by injecting a composition from a plurality of nozzles. A display device is manufactured which is provided bank sections (112a, 112b) between the functional layers formed on the electrode (111). A nozzle array in which a plurality of nozzles are disposed to be inclined in a main scanning direction scans on the base body (2). A liquid drop (110c1) of the composition which is injected initially for each functional layer is injected so as to contact at least a part of the bank sections (112a, 112b). According to manufacturing method for a display device in the present invention, it is possible to realize a display device having superior display quality without causing non-uniform functional layer for each pixel electrode.
摘要:
To provide an electro-optical device, which is capable of improving film thickness uniformity and flatness of electro-optical layers to be formed. A method of manufacturing an electro-optical device according to the present invention comprises a step of forming a first partition wall portion and a second partition wall portion, and a step of ejecting a liquid substance for each of openings of each of the partition wall portions using a liquid droplet ejecting method, the liquid substance including functional materials composing the electro-optical layers. The ejected liquid substance has different viscosities for each electro-optical layer. In the partition wall portion formation step, a surface area of a portion of the first partition wall portion projecting from the second partition wall portion becomes relatively small in a position at which the liquid substance having relatively low viscosity is ejected, and the surface area of the portion of the first partition wall portion projecting from the second partition wall portion becomes relatively large in a position at which the liquid substance having relatively high viscosity is ejected.
摘要:
A bank section (112a, 112b) are formed between a plurality of electrodes (111) which are formed on the base body (2). A functional layer is formed on each electrode (111) by injecting a composition from a plurality of nozzles. A display device is manufactured which is provided bank sections (112a, 112b) between the functional layers formed on the electrode (111). A nozzle array in which a plurality of nozzles are disposed to be inclined in a main scanning direction scans on the base body (2). A liquid drop (110c1) of the composition which is injected initially for each functional layer is injected so as to contact at least a part of the bank sections (112a, 112b). According to manufacturing method for a display device in the present invention, it is possible to realize a display device having superior display quality without causing non-uniform functional layer for each pixel electrode.
摘要:
A bank section (112a, 112b) are formed between a plurality of electrodes (111) which are formed on the base body (2). A functional layer is formed on each electrode (111) by injecting a composition from a plurality of nozzles. A display device is manufactured which is provided bank sections (112a, 112b) between the functional layers formed on the electrode (111). A nozzle array in which a plurality of nozzles are disposed to be inclined in a main scanning direction scans on the base body (2). A liquid drop (110c1) of the composition which is injected initially for each functional layer is injected so as to contact at least a part of the bank sections (112a, 112b). According to manufacturing method for a display device in the present invention, it is possible to realize a display device having superior display quality without causing non-uniform functional layer for each pixel electrode.
摘要:
To provide an electro-optical device, which is capable of improving film thickness uniformity and flatness of electro-optical layers to be formed. A method of manufacturing an electro-optical device according to the present invention comprises a step of forming a first partition wall portion and a second partition wall portion, and a step of ejecting a liquid substance for each of openings of each of the partition wall portions using a liquid droplet ejecting method, the liquid substance including functional materials composing the electro-optical layers. The ejected liquid substance has different viscosities for each electro-optical layer. In the partition wall portion formation step, a surface area of a portion of the first partition wall portion projecting from the second partition wall portion becomes relatively small in a position at which the liquid substance having relatively low viscosity is ejected, and the surface area of the portion of the first partition wall portion projecting from the second partition wall portion becomes relatively large in a position at which the liquid substance having relatively high viscosity is ejected.
摘要:
The color filter substrate has a functional region which includes a plurality of colored layers and which functions as a color filter selectively transmitting predetermined color light components and a non-functional region other than the functional region. The method includes discharging, onto a substrate, a liquid material, in which coloring materials constituting the colored layers are dissolved or dispersed into a solvent, with a liquid droplet discharge method. In the discharging of the liquid material, the liquid material is discharged onto the functional region and the liquid material or the solvent is discharged onto the non-functional region. The amount of the solvent discharged onto the non-functional region per unit area is larger than the amount of the solvent discharged onto the functional region per unit area.
摘要:
A device including illuminating elements, each of which is disposed between a first electrode and a second electrode above a base body is manufactured by forming the first electrode and forming a bank section so as to overlap a part of the electrode. The manufacturing process further includes forming a hole implantation/transportation layer above the first electrode, forming illuminating layer by injecting compositions for a plurality of nozzles, and forming the second electrode above the illuminating layer. Nozzle arrays where a plurality of the nozzles are disposed scanning the base body in a diagonal manner in a main scanning direction, and liquid drops of the compositions which are initially injected so as to contact at least a part of the bank section.
摘要:
Provided is an additive masterbatch having excellent storage stability (agglomeration resistance), which also has reduced surface tackiness despite comprising a low-melting-point resin additive at a high concentration. The additive masterbatch of the present invention is characterized by comprising, with respect to 100 parts by mass of (A) a polyolefin resin, 65 to 300 parts by mass of (B) a resin additive having a melting point of not higher than 80° C.; and 0.8 to 24 parts by mass of (C) a benzotriazole-based ultraviolet absorber.
摘要:
Even when temperature sensors (12, 13) used in a device for warming a battery (1) being not in use by using a battery-driven heater (2) have failed, the battery (1) is prevented from freezing. Based on a battery temperature (Tb) and an outside air temperature (Ta), times (Δt1 to Δt8) during which Tb will decrease down to a warming start temperature (Tb_start) are each set to the next controller startup time (Δt). A controller (9) is started up every Δt, at t2, t3, and t4, and checks whether Tb