摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400° C. and above. Heat treatment at a high temperature (400-700° C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1-5 μm wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
The invention is to provide a high-productivity method for fabricating a TFT device having different LDD structures on one and the same substrate, and the TFT device. Specifically, the invention provides a novel TFT structure, and a high-productivity method for fabricating it. A Ta film or a Ta-based film having good heat resistance is used for forming interconnections, and the interconnections are covered with a protective film. The interconnections can be subjected to heat treatment at high temperatures (400 to 700° C.), and, in addition, the protective film serves as an etching stopper. In the peripheral driving circuit portion in the device, TFTs having an LDD structure are disposed in a self-aligned process in which is used side walls 126 and 127; while in the pixel matrix portion therein, TFTs having an LDD structure are disposed in a non-self-aligned process in which is used an insulator 125.
摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400° C. and above. Heat treatment at a high temperature (400–700° C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1–5 μm wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
The invention is to provide a high-productivity method for fabricating a TFT device having different LDD structures on one and the same substrate, and the TFT device. Specifically, the invention provides a novel TFT structure, and a high-productivity method for fabricating it. A Ta film or a Ta-based film having good heat resistance is used for forming interconnections, and the interconnections are covered with a protective film. The interconnections can be subjected to heat treatment at high temperatures (400 to 700° C.), and, in addition, the protective film serves as an etching stopper. In the peripheral driving circuit portion in the device, TFTs having an LDD structure are disposed in a self-aligned process in which is used side walls 126 and 127; while in the pixel matrix portion therein, TFTs having an LDD structure are disposed in a non-self-aligned process in which is used an insulator 125.
摘要:
The invention is to provide a high-productivity method for fabricating a TFT device having different LDD structures on one and the same substrate, and the TFT device. Specifically, the invention provides a novel TFT structure, and a high-productivity method for fabricating it. A Ta film or a Ta-based film having good heat resistance is used for forming interconnections, and the interconnections are covered with a protective film. The interconnections can be subjected to heat treatment at high temperatures (400 to 700° C.), and, in addition, the protective film serves as an etching stopper. In the peripheral driving circuit portion in the device, TFTs having an LDD structure are disposed in a self-aligned process in which is used side walls 126 and 127; while in the pixel matrix portion therein, TFTs having an LDD structure are disposed in a non-self-aligned process in which is used an insulator 125.
摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400° C. and above. Heat treatment at a high temperature (400-700° C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1-5 &mgr;m wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400° C. and above. Heat treatment at a high temperature (400-700° C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1-5 &mgr;m wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400.degree. C. and above. Heat treatment at a high temperature (400-700.degree. C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1-5 .mu.m wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
A semiconductor device and a process for production thereof, said semiconductor device having a new electrode structure which has a low resistivity and withstands heat treatment at 400° C. and above. Heat treatment at a high temperature (400-700° C.) is possible because the wiring is made of Ta film or Ta-based film having high heat resistance. This heat treatment permits the gettering of metal element in crystalline silicon film. Since this heat treatment is lower than the temperature which the gate wiring (0.1-5 μm wide) withstands and the gate wiring is protected with a protective film, the gate wiring retains its low resistance.
摘要:
In a semiconductor device having a substrate which has a metal surface, an insulating film which is formed on the substrate having the metal surface, and a pixel unit which is formed on the insulating film; the pixel unit includes a TFT, and wiring lines connected with the TFT, and a storage capacitor is constituted by the substrate (11) having the metal surface, the insulating film (12), and the wiring line (21). As the insulating film is thinner, and as the area of a region where the insulating film and the wiring line lie in contact is larger, the storage capacitor is endowed with a larger capacity.