摘要:
A quantum beam aided atomic force microscopy and quantum beam aided atomic force microscope that can simultaneously perform atomic-level configuration observation and elemental analysis with the use of an atomic force microscope and further can effect analysis of the chemical state of sample surface and that as being operable in liquids, can realize the elemental analysis and chemical state analysis of biosamples with an atomic-level resolving power. Accordingly, atoms of sample surface are irradiated with quantum beams, such as charged particles, electrons and photons, having a given electron transition energy characteristic of element, and any change in interaction force between the atoms of sample surface having been irradiated with quantum beams and the distal end of the probe is detected.
摘要:
A quantum beam aided atomic force microscopy and quantum beam aided atomic force microscope that can simultaneously perform atomic-level configuration observation and elemental analysis with the use of an atomic force microscope and further can effect analysis of the chemical state of sample surface and that as being operable in liquids, can realize the elemental analysis and chemical state analysis of biosamples with an atomic-level resolving power. Accordingly, atoms of sample surface are irradiated with quantum beams, such as charged particles, electrons and photons, having a given electron transition energy characteristic of element, and any change in interaction force between the atoms of sample surface having been irradiated with quantum beams and the distal end of the probe is detected.
摘要:
Provided is a fuel cell anode catalyst in which a platinum-ruthenium alloy is supported on a carbon material, and a manufacturing method therefor. The molar ratio (Pt:Ru) of the alloy is in the range of 1:1-5. When the coordination numbers of the Pt atom and the Ru atom of an atom site in the alloy, as measured by x-ray absorption fine structure, are expressed as N(Pt) and N(Ru) respectively, then N(Ru)/(N(Pt)+N(Ru)) in the platinum site is in the range of 0.8-1.1 times the theoretical value, and N(Pt)/(N(Ru)+N(Pt)) in the Ru site is in the range of 0.8-1.1 times the theoretical value. The average particle diameter of the alloy is in the range of 1-5 nm, and the standard deviation for the particle diameter is in the range of 2 nm or lower. Further provided is: a fuel cell anode with an anode composition layer, on a substrate surface, which contains the catalyst and a proton conductive polymer; a fuel cell membrane electrode assembly with a polymer electrolyte membrane sandwiched between the anode and a cathode; and a fuel cell containing the fuel cell membrane electrode assembly.
摘要:
A catalyst for the selective oxidation of alkanes and alkenes has been developed. The catalyst consists of a noble metal component such as platinum and a SbOx component. A unique feature of the catalyst is that the noble metal component is present as particles of which from about 1 to about 30 mole % of each particle is in the form of a noble metal/Sb alloy. Optionally a modifier and/or a refractory inorganic oxide may also be added to the catalyst. A process for preparing the catalyst is also presented.
摘要:
Provided is a method for manufacturing a two-dimensional pattern by simultaneously forming a plurality of quantum dots on a surface of a solid material and making the quantum dots a periodic structure by a laser irradiation, and a device structure and a device fabricated by the method. The method for fabricating a quantum dot-formed surface including the laser irradiation which irradiate at least one batch of laser onto a surface of a solid material to simultaneously form a plurality of quantum dots on the surface, arranging the plurality of quantum dots into periodic arrays.