摘要:
A method for operating a reactor facility for equilibrium-limited reactions, includes: converting starting materials to a product in a reaction chamber under a pressure p1, wherein an absorbent is loaded with the product and absorbs starting materials; discharging the loaded absorbent from the reaction chamber; lowering the pressure of the absorbent to a pressure p2 which is lower than pressure p1 and the product and starting materials are discharged in the gaseous state from the liquid absorbent; separating the gaseous products by condensation from the gaseous starting materials at the same time as a pressure p3 higher than pressure p1 is applied to the liquid absorbent, under pressure p3 into a liquid jet gas compressor in which the gaseous starting materials separated from the products are aspirated and dissolved in the liquid absorbent; and then introduced under pressure p4, which is lower than pressure p3, into the reaction chamber.
摘要:
Various embodiments include a reactor for implementation of equilibrium-limited reactions comprising: a reaction space; a reactant feed; an outlet for reaction products; a device for accommodating catalyst material; and a stirrer device comprising: a hollow shaft with a gas inlet opening at one end of the hollow shaft; a first stirrer paddle with gas exit orifices mounted on the hollow shaft; and a second stirrer paddle mounted on the hollow shaft proximate the device for accommodating the catalyst material.
摘要:
The present disclosure relates to chemical synthesis. Various embodiments of the teachings thereof may include the synthesis of methanol, generated from hydrogen and a carbonaceous gas. For example, a method may include: compressing gaseous starting materials to an operating pressure of at least 200 bar; supplying the starting materials to a synthesis reactor; removing a product mixture from the synthesis reactor in a liquid state; withdrawing mechanical energy from the product mixture by reducing a pressure of the product mixture; and using the mechanical energy to compress the gaseous starting materials.
摘要:
A control system for controlling the temperature in a high-temperature battery to which hot air is supplied via an air duct system or in a high-temperature electrolyzer to which hot air is supplied via an air duct system is provided. The control system includes at least two temperature probes designed to detect the temperature at two different points in the air duct system, at least one first air-conditioning unit for physically conditioning the air, mounted in the air duct system upstream of the high-temperature battery or high-temperature electrolyzer, and a recirculation duct which recirculates hot air discharged from the high-temperature battery or high-temperature electrolyzer to a point in the air duct system upstream of the high-temperature battery or high-temperature electrolyzer and feeds the hot air back into the air duct system. The control system controls the first air-conditioning unit in accordance with the temperatures detected by the temperature probes.
摘要:
Various embodiments may include a reactor for carrying out equilibrium-limited reactions comprising: a reaction chamber for receiving a catalyst; a sorption chamber for receiving a sorption agent; a feedstock feeding device; a sorption agent feeding device; and a gas-permeable element separating the reaction chamber from the sorption chamber, wherein the gas-permeable element repels particles of the sorption agent.
摘要:
Various embodiments include a reactor for implementation of equilibrium-limited reactions comprising: a reaction space; a reactant feed; an outlet for reaction products; a device for accommodating catalyst material; and a stirrer device comprising: a hollow shaft with a gas inlet opening at one end of the hollow shaft; a first stirrer paddle with gas exit orifices mounted on the hollow shaft; and a second stirrer paddle mounted on the hollow shaft proximate the device for accommodating the catalyst material.
摘要:
The present disclosure relates to chemical synthesis. Various embodiments of the teachings thereof may include the synthesis of methanol, generated from hydrogen and a carbonaceous gas. For example, a method may include: compressing gaseous starting materials to an operating pressure of at least 200 bar; supplying the starting materials to a synthesis reactor; removing a product mixture from the synthesis reactor in a liquid state; withdrawing mechanical energy from the product mixture by reducing a pressure of the product mixture; and using the mechanical energy to compress the gaseous starting materials.
摘要:
The present disclosure relates to energy storage. The teachings thereof may be embodied in a device and/or a method for storing electricity. For example a device for storing energy may include: a first vessel having a first holding space; a separating apparatus dividing the first holding space into a first chamber for holding a first medium and a second chamber for holding a gas phase; the separating apparatus movable to cause a simultaneous change in volume of the first chamber and the second chamber; a second vessel with a second holding space exchanging mass transfer of the gas phase in the second chamber; a temperature-control apparatus supplying or removing heat energy to the second vessel; a conveying apparatus conveying the medium into the first chamber; and an expansion apparatus driven by the medium.
摘要:
A method and a device for charging a stratified thermal energy store are disclosed. According to the method, a working fluid of a heat pump is introduced in the gaseous phase into a liquid heat transfer medium of the stratified thermal energy store at at least one introduction point and is brought into direct physical contact with the heat transfer medium, the pressure in the stratified thermal energy store at the introduction point being greater than or equal to the condensation pressure of the working fluid.
摘要:
A reactor for performing equilibrium-reduced reactions, includes a tubular reactor housing in which a first zone is arranged, through which a liquid absorbent flows, and which extends in the longitudinal direction of the tube. Aa second zone is arranged for receiving a catalyst material and also extends in the longitudinal direction of the tube. The first zone and the second zone are separated by a gas-permeable separation zone. The separation zone has a mechanically self-supporting structure and the aspect ratio of the tubular reactor housing along a reaction zone is greater than 6.