Abstract:
Methods and systems are provided for forming carbon allotropes. An exemplary method includes treating a carbonaceous compound to form a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C. The carbon allotropes are separated from a reactor effluent stream.
Abstract:
a reactor for conducting laboratory reactions comprises includes reaction vessel, a catalyst holder in the reaction vessel, and a drive system configured to drive reciprocating linear movement of the catalyst basket. The catalyst holder can be configured to hold a plurality of catalyst particles so the catalyst particles remain spaced apart from one another. A reactor for conducting laboratory reactions can also include a reaction vessel, an impeller in the reaction vessel, and a drive system configured to drive reciprocating linear movement of the impeller.
Abstract:
Methods and systems are provided for forming carbon allotropes. An exemplary method includes forming a feedstock that includes at least about 10 mol % oxygen, at least about 10 mol % carbon, and at least about 20 mol % hydrogen. Carbon allotropes are formed from the feedstock in a reactor in a Bosch reaction at a temperature of at least about 500° C., and the carbon allotropes are separated from a reactor effluent stream.
Abstract:
Disclosed herein is a simulated moving bed chromatography device comprises a minimum of one stationary pipe with a plurality of inlet/outlet channels, a rotary device next to the stationary pipes, a stationary radial flow segmented vessel communicates with the rotary device, a fluid moving device and a drive means to rotate the rotary device. The counter movement of the stationary phase and the fluid is simulated by rotating the rotary device in the same direction as the circulating fluid flow, and the fluid flows through the flow distribution segments, the stationary phase segments, the outer fluid transfer segments, holes or by passes of the improved partition plates in the flow distribution segments/compartments and outer fluid transfer segments.
Abstract:
This specification discloses a radial flow continuous reaction/regeneration apparatus. Through employing a rotary device to individually and annularly distributing process fluid and regeneration fluid into a stationary segmented reaction/regeneration box and receiving effluents individually and annularly from the same stationary reaction/regeneration box, the mentioned radial flow continuous reaction/regeneration apparatus can be operated continuously and efficiently without the need for shutting down for regeneration. This radial flow continuous reaction/regeneration apparatus is not only used to separate components by adsorption, such as dehumidification, but also is used in chemical processes to carry out catalytic reaction, regenerate catalyst and used as filtration device to trap particles by changing the filler in the stationary reaction/regeneration box.
Abstract:
A unique reactor configuration especially suitable for interphase mass transfer and mixing of multiple phases, i.e. gas(es), liquid(s), and solid(s) where reaction is catalyzed by a solid catalyst comprises a draught tube reactor wherein the solid catalyst particles are maintained in an annular space between the draught tube of the reactor and an annulus-defining wall by means of filter elements positioned downstream and optionally also upstream from the catalyst bed.
Abstract:
A unique reactor configuration especially suitable for interphase mass transfer and mixing of multiple phases, i.e. gas(es), liquid(s), and solid(s) where reaction is catalyzed by a solid catalyst comprises a draught tube reactor wherein the solid catalyst particles are maintained in an annular space between the draught tube of the reactor and an annulus-defining wall by means of filter elements positioned downstream and optionally also upstream from the catalyst bed.
Abstract:
A recycling and recovery system and process comprising a flash gas separator that receives a slurry comprising liquid medium and solid polymer particles. The flash gas separator separates the diluent from the solid polymer particles as a vapor stream comprising at least diluent and heavies. A line receives the vapor stream from the flash gas separator. The line leads to a heavies removal system that yields a liquid that is relatively concentrated in heavies and a diluent vapor that is relatively free of heavies. The liquid is passed to a heavies column, while the diluent vapor is passed to a diluent recycle chamber and then recycled to a slurry polymerization reactor without additional treatment to remove heavies.
Abstract:
A method for providing improved estimates of properties of a chemical manufacturing process is disclosed. The method employs a process model that includes, or is modified by, scores or other gains obtained from the mathematical transformation of data obtained from an on-line analyzer. Chemical manufacturing processes using the method also are disclosed.
Abstract:
An apparatus for testing performance of a catalyst in a gaseous phase catalytic reaction for a given reactant comprises a reactor receiving a predetermined quantity of fluid reactant discharging the reaction mixture, including reaction products, from the reactor after a predetermined residence time. The reactor comprises a confined reactor volume with an upflow zone and a downflow zone. A device circulates fluids upwardly through the upflow zone and downwardly through the downflow zone where particulate catalysts in the upflow zone are fluidized by the upward flow of the fluid. The circulating device is adapted to circulate the fluid about the reactor volume at a rate which provides at any moment during the residence time for the reactants an essentially uniform concentration of reactants throughout the reactor volume to simulate conditions in a catalytic riser reactor.