MAGNETIC RESONANCE APPARATUS AND METHOD FOR DYNAMIC ADJUSTMENT THEREOF WITH MULTIPLE ADJUSTMENT PARAMETERS

    公开(公告)号:US20170242089A1

    公开(公告)日:2017-08-24

    申请号:US15441288

    申请日:2017-02-24

    摘要: In a method and magnetic resonance (MR) apparatus for performing an adjustment of the MR system, an examination object under is divided into at least one excitation volume. First adjustment parameters for the at least one excitation volume of the object, and second adjustment parameters for the at least one excitation volume of the object, which differ from the first adjustment parameters are determined. First MR signals are acquired from the at least one excitation volume using the first adjustment parameters. Second MR signals are acquired from an excitation volume using the second adjustment parameters. A first MR image of the at least one excitation volume is reconstructed using the first MR signal. A second MR image of the at least one excitation volume is reconstructed using the second MR signal.

    MAGNETIC FIELD MONITORING OF SPIRAL ECHO TRAIN IMAGING

    公开(公告)号:US20180292499A1

    公开(公告)日:2018-10-11

    申请号:US15947443

    申请日:2018-04-06

    摘要: In some aspects, the disclosed technology relates to magnetic field monitoring of spiral echo train imaging. In one embodiment, a method for spiral echo train imaging of an area of interest of a subject includes measuring k-space values and field dynamics corresponding to each echo of a spiral echo pulse train, using a dynamic field camera and a magnetic resonance imaging (MRI) system. The dynamic field camera is configured to measure characteristics of fields generated by the MRI system; the characteristics include at least one imperfection associated with the MRI system. The spiral echo pulse train corresponds to a spiral trajectory scan from the MRI system that obtains magnetic resonance imaging data using a pulse sequence which applies spiral gradients in-plane with through-plane phase encoding. The method also includes generating, based on the characteristics of the fields measured by the dynamic field camera and based on the obtained magnetic resonance imaging data, a model of the k-space trajectory corresponding to each echo of the spiral echo pulse train; and, based on the generated model of the k-space trajectory, reconstructing images that correspond to the area of interest and that are compensated for the at least one imperfection associated with the MRI system.