摘要:
A fiber or filament comprising a polyester copolymerized with 2 to 20 mole % of a compound having a specific structure, which has one or two ester-forming functional groups. The polyester fiber or filament has a low birefringence and excellent dyeability and deep color development. The polyester fiber or filament is provided, when drawn under selected conditions, with not only high shrinkage ratio but also high shrinking stress, and has excellent lightfastness, thereby being useful while replacing conventional highly shrinkable fibers.
摘要:
An electrically conductive composite fiber comprising an electrically conductive layer formed of a polyester-based polymer (A) having a melting point of 200° C. or higher and containing from 23 to 33% by weight of electrically conductive carbon black, and a protective layer formed of a polyester-based polymer (B) having a melting point of 210° C. or higher, wherein the difference between the SP value of the (A) and the SP value of the (B) is adjusted to not greater than a predetermined value and the fiber strength and the elongation at break are adjusted within certain ranges. This can make it possible to obtain an electrically conductive composite fiber that has a superior antistatic performance, which is not degraded very much over a practical wearing for a long term, though it contains only a relatively small amount of electrically conductive carbon black, and that is suitable for the field of clothing such as clean room wears and working wears.
摘要:
In an electrically conductive sheath-core conjugate fiber including an electrically conductive layer made of a thermoplastic polymer (A) containing electrically conductive carbon black fine particles which constitutes a sheath component and a protective layer made of a fiber-forming thermoplastic polymer (B) which constitutes a core component, the ratio of the (A) to the total weight of the (A) and the (B) is 10 to 35% by weight, the L1/L0 ratio is 1.04 to 10.0 where L1 represents the length of a boundary between the core component and the sheath component in a cross section of the conjugate fiber and L0 represents the length of the circumference of a circle having an area equal to a cross sectional area of the core component, the fineness, the strength at break and the elongation at break are each adjusted within specified ranges, the shrinkage in hot water at 100° C. is within a specified range, and the fiber surface coverage of the sheath component is 85% or more. This results in provision of an electrically conductive sheath-core conjugate fiber that is excellent in antistatic performance, which is hardly degraded even after long-term wearing, that is maintained for a long time, and that is excellent in durability. A method for producing the electrically conductive sheath-core conjugate fiber and a dust-proof clothing using such a fiber are also provided.
摘要:
In an electrically conductive sheath-core conjugate fiber including an electrically conductive layer made of a thermoplastic polymer (A) containing electrically conductive carbon black fine particles which constitutes a sheath component and a protective layer made of a fiber-forming thermoplastic polymer (B) which constitutes a core component, the ratio of the (A) to the total weight of the (A) and the (B) is 10 to 35% by weight, the L1/L0 ratio is 1.04 to 10.0 where L1 represents the length of a boundary between the core component and the sheath component in a cross section of the conjugate fiber and L0 represents the length of the circumference of a core component, the fineness, the strength at break and the elongation at break are each adjusted within specified ranges, the shrinkage in hot water at 100° C. is within a specified range, and the fiber surface coverage of the sheath component is 85% or more. This results in provision of an electrically conductive sheath-core conjugate fiber that is excellent in antistatic performance, which is hardly degraded even after long-term wearing, that is maintained for a long time, and that is excellent in durability. A method for producing the electrically conductive sheath-core conjugate fiber and a dust-proof clothing using such a fiber are also provided.
摘要:
Provided is an electrically conductive conjugate fiber formed by conjugating an electrically conductive layer (A) including 60 to 80% by weight of a thermoplastic resin and 20 to 40% by weight of electrically conductive particles and a protective layer (B) including 50 to 95% by weight of polyethylene terephthalate and 5 to 50% by weight of polyethylene-2,6-naphthalate, wherein the fiber has a degree of elongation (DE) of 100 to 350%. This provides an electrically conductive conjugate fiber which exhibits a small change with time in physical properties such as a degree of elongation or boiling water shrinkage during its transportation or storage, while having a certain degree of elongation.
摘要:
An electrically conductive composite fiber comprising an electrically conductive layer formed of a polyester-based polymer (A) having a melting point of 200° C. or higher and containing from 23 to 33% by weight of electrically conductive carbon black, and a protective layer formed of a polyester-based polymer (B) having a melting point of 210° C. or higher, wherein the difference between the SP value of the (A) and the SP value of the (B) is adjusted to not greater than a predetermined value and the fiber strength and the elongation at break are adjusted within certain ranges. This can make it possible to obtain an electrically conductive composite fiber that has a superior antistatic performance, which is not degraded very much over a practical wearing for a long term, though it contains only a relatively small amount of electrically conductive carbon black, and that is suitable for the field of clothing such as clean room wears and working wears.
摘要:
There is provided a prepreg which contains components (A) to (C) as mentioned below, wherein the component (A) is arranged on one surface or both surfaces of a layer comprising the components (B) and (C): (A) a nonwoven fabric comprising a thermoplastic elastomer and/or a polyolefin each of which has a value of tan θ of 0.06 or more at 10° C. as measured in a viscoelasticity measurement and is incompatible with the component (B); (B) a first epoxy resin composition; and (C) a reinforcing fiber. There are also provided a fiber-reinforced composite material which has excellent rigidity, strength, and vibration-damping performance, a prepreg which can be used suitably for the production of the fiber-reinforced composite material, and a process for producing the prepreg.
摘要:
A prepreg containing a carbon fiber [A] and a thermosetting resin [B], and in addition, satisfying at least one of the following (1) and (2).(1) a thermoplastic resin particle or fiber [C] and a conductive particle or fiber [D] are contained, and weight ratio expressed by [compounding amount of [C] (parts by weight)]/[compounding amount of [D] (parts by weight)] is 1 to 1000.(2) a conductive particle or fiber of which thermoplastic resin nucleus or core is coated with a conductive substance [E] is contained.
摘要:
The present invention relates to a composite material using titanium or a titanium alloy, and concerns such a composite material obtained through processes in which after an imidazole compound has been applied to the surface of titanium or a titanium alloy, an adhered is adhered thereto. The composite material of the present invention is obtained by adhering the adhere thereto by using an adhesive resin composition containing a thermoplastic resin having a fracture energy release rate G1C of 4500 J/m2 or more. The present invention makes it possible to provide a composite material using titanium or a titanium alloy, which exerts a superior adhesive strength stably at room temperature as well as even after exposure to a high-temperature, high humidity condition.
摘要翻译:本发明涉及使用钛或钛合金的复合材料,并且涉及这样的复合材料,其通过在将咪唑化合物施加到钛或钛合金的表面之后附着到其上的方法获得。 本发明的复合材料通过使用含有断裂能释放速率G1C为4500J / m 2以上的热塑性树脂的粘合性树脂组合物来粘附附着物而获得。 本发明使得可以提供使用钛或钛合金的复合材料,其在室温下以及甚至在暴露于高温,高湿度条件之后都能稳定地发挥优异的粘合强度。
摘要:
A method of controlling the criticality of a nuclear fuel cycle facility includes steps of producing a reactor fuel by adding less than 0.1% by weight of gadolinia to a uranium dioxide powder with a uranium enrichment of greater than 5% by weight and controlling the effective neutron multiplication factor of a uranium dioxide system in a step of handling the reactor fuel to be less than or equal to the maximum of the effective neutron multiplication factor of a uranium dioxide system with a uranium enrichment of 5% by weight.