摘要:
A closed-loop control system for stereoscopic video capture is provided. At least two motorized lenses are positioned in accordance with specified parameters to capture spatially-disparate images of a scene. The motorized lenses focus light on a corresponding one of the at least two sensors, which generate image streams. One or more processors execute instructions to provide a stream analyzer and a control module. The stream analyzer receives the image streams from the sensors and analyzes the image streams and the specified parameters in real time; the stream analyzer then modifies the image streams and generates metadata. The control module then receives and analyzes the image streams and metadata and transmits updated parameters to a control mechanism that is coupled to the at least two motorized lenses. The control mechanism then modifies operation of the at least two motorized lenses in real time in accordance with the updated parameters.
摘要:
A closed-loop control system for stereoscopic video capture is provided. At least two motorized lenses are positioned in accordance with specified parameters to capture spatially-disparate images of a scene. The motorized lenses focus light on a corresponding one of the at least two sensors, which generate image streams. One or more processors execute instructions to provide a stream analyzer and a control module. The stream analyzer receives the image streams from the sensors and analyzes the image streams and the specified parameters in real time; the stream analyzer then modifies the image streams and generates metadata. The control module then receives and analyzes the image streams and metadata and transmits updated parameters to a control mechanism that is coupled to the at least two motorized lenses. The control mechanism then modifies operation of the at least two motorized lenses in real time in accordance with the updated parameters.
摘要:
Methods and systems for generating stereoscopic content with granular control over binocular disparity based on multi-perspective imaging from representations of light fields are provided. The stereoscopic content is computed as piecewise continuous cuts through a representation of a light field, minimizing an energy reflecting prescribed parameters such as depth budget, maximum binocular disparity gradient, desired stereoscopic baseline. The methods and systems may be used for efficient and flexible stereoscopic post-processing, such as reducing excessive binocular disparity while preserving perceived depth or retargeting of already captured scenes to various view settings. Moreover, such methods and systems are highly useful for content creation in the context of multi-view autostereoscopic displays and provide a novel conceptual approach to stereoscopic image processing and post-production.
摘要:
A multi-planar plenoptic display assembly is provided that includes multiple spatially-varying light emitting and light modulating planes. The display assembly includes at least one light emitting device and may include, but does not require, a modulating device used in conjunction according to display methods taught herein to display light field data. A display assembly controller may be used to render a light field with depth into a multi-planar plenoptic display assembly by assigning decomposed portions of the light field to the display assembly for display or presentation by differing ones of the emitting elements and by operating a modulating device to provide a parallax barrier. In one embodiment, a dynamic parallax barrier and a number of bi-state screens. Another embodiment uses a beam splitter to co-locate two pairs of autostereoscopic displays each including a projector projecting 3D content, a parallax barrier, and an emissive/projector element.
摘要:
A computer-implemented method is provided for physical face cloning to generate a synthetic skin. Rather than attempt to reproduce the mechanical properties of biological tissue, an output-oriented approach is utilized that models the synthetic skin as an elastic material with isotropic and homogeneous properties (e.g., silicone rubber). The method includes capturing a plurality of expressive poses from a human subject and generating a computational model based on one or more material parameters of a material. In one embodiment, the computational model is a compressible neo-Hookean material model configured to simulate deformation behavior of the synthetic skin. The method further includes optimizing a shape geometry of the synthetic skin based on the computational model and the captured expressive poses. An optimization process is provided that varies the thickness of the synthetic skin based on a minimization of an elastic energy with respect to rest state positions of the synthetic skin.
摘要:
In an object generation system, consumable base materials are characterized in a characterization process wherein an object generation system can use a plurality of so-characterized base materials. User input representing a desired object and set of characteristics for that desired object are processed, using a computer or computing device, to derive a mapping of locations for placement of portions of the plurality of base materials such that when the mapping is provided to an object generator, the generated object approximates the representing a desired object and set of characteristics. The characterization of a base material might include elasticity of the base material, the user input might be a desired shape and elasticity, the object generator might be a 3D multi-material printer and the generated object might at least approximate the desired shape and elasticity as a result of being constructed from the plurality of base materials used by the printer.
摘要:
A face is scanned to obtain a three-dimensional geometry of the face, images are also acquired of the face, and subsurface scattering of the face is measured. A translucency map is determined from the subsurface reflectance. A total surface reflectance and a normal map are estimated from the three-dimensional geometry and the images, and diffuse reflectance is estimated using the total reflectance. An albedo map is determined from the diffuse reflectance. The diffuse reflectance is subtracted from the total reflectance to obtain a surface reflectance. A set of bi-directional reflectance functions is fitted to the surface reflectance. Then, the set of bi-directional reflectance distribution functions, the albedo map, and the translucency map are combined to form a skin reflectance model of the face.
摘要:
A technique for fabricating a highlight hologram based on a digital object performs point sampling on the object and represents each sampled point as a geometric patch. A set of geometric patches corresponding to sampled points from the object are fabricated into a substrate. A paraboloid patch may be used for reflective substrates while a hyperboloid may be used for transmissive substrates. To avoid specifying overlapping patches, which are impractical to fabricate, certain of the sample points may be merged. An output set of grooves is saved and may be used to specify fabrication of a highlight hologram on the physical substrate.
摘要:
In an object generation system, consumable base materials are characterized in a characterization process wherein an object generation system can use a plurality of so-characterized base materials. User input representing a desired object and set of characteristics for that desired object are processed, using a computer or computing device, to derive a mapping of locations for placement of portions of the plurality of base materials such that when the mapping is provided to an object generator, the generated object approximates the representing a desired object and set of characteristics. The characterization of a base material might include elasticity of the base material, the user input might be a desired shape and elasticity, the object generator might be a 3D multi-material printer and the generated object might at least approximate the desired shape and elasticity as a result of being constructed from the plurality of base materials used by the printer.
摘要:
A technique for fabricating a highlight hologram based on a digital object performs point sampling on the object and represents each sampled point as a geometric patch. A set of geometric patches corresponding to sampled points from the object are fabricated into a substrate. A paraboloid patch may be used for reflective substrates while a hyperboloid may be used for transmissive substrates. To avoid specifying overlapping patches, which are impractical to fabricate, certain of the sample points may be merged. An output set of grooves is saved and may be used to specify fabrication of a highlight hologram on the physical substrate.