摘要:
Process gas purification device (2) for a melt reduction system (1) comprising at least one reduction reactor (3) and a melting gasification reactor (4), a first line system (5) for discharging a furnace gas (6) from the reduction reactor (3) and a second line system (7) for discharging a generator gas (8) from the melting gasification reactor (4) wherein both line systems (5,7) lead to a respective wet scrubbing system (11, 12). The furnace gas or generator gas flow can be throttled preferably by way of a control element (41) that varies a control gap (40) and the scrubber or cooling liquid (49) can be collected and drained. The first wet scrubber system (11) of the first line system (5) for routing the furnace gas (6) and the second Venturi scrubber system (12) of the second line system (7) for routing the generator gas (8) both discharge into a common mist elimination device (14).
摘要:
Process gas purification device (2) for a melt reduction system (1) comprising at least one reduction reactor (3) and a melting gasification reactor (4), a first line system (5) for discharging a furnace gas (6) from the reduction reactor (3) and a second line system (7) for discharging a generator gas (8) from the melting gasification reactor (4) wherein both line systems (5,7) lead to a respective wet scrubbing system (11, 12). The furnace gas or generator gas flow can be throttled preferably by way of a control element (41) that varies a control gap (40) and the scrubber or cooling liquid (49) can be collected and drained. The first wet scrubber system (11) of the first line system (5) for routing the furnace gas (6) and the second Venturi scrubber system (12) of the second line system (7) for routing the generator gas (8) both discharge into a common mist elimination device (14).
摘要:
In a method for the production of molten metal, oxygen, a reducing agent and iron reduced in a reduction reactor are introduced into a melt gasifier, the reducing agent is gasified with oxygen and reduced iron is melted by means of the heat which occurs, the cupola gas being used as at least a fraction of the reduction gas. Reacted top gas is drawn off from the reduction reactor.For increased efficiency in terms of energy and raw materials, there is in this case provision for at least part of the heat energy of the top gas and/or of the fraction of the reduction gas which is provided for use as cooling gas and as excess gas to be utilized for the indirect heating of at least one further gas used in the method.For this purpose, at least one heat exchanger in a line for top gas and/or the fraction of the reduction gas which is provided for use as cooling gas and as excess gas is provided, at least one further gas used in the method flowing through said heat exchanger.
摘要:
An injector insert pipe is arranged in the gas channel of a nozzle for injecting oxygen-containing gas into a pig iron production unit, wherein an interspace which surrounds the pipe is present over the entire pipe length between the wall of the gas channel and the pipe outer wall. The pipe extends at least as far as the nozzle end face which contains the mouth of the gas channel. The pipe space is connected to an oxygen-containing gas feed line, and the interspace is connected to a protective gas supply line. In a process, oxygen-containing gas is fed into the pipe space, which after it has flowed through the pipe, enters the production unit at an entry velocity, and the interspace is simultaneously flowed through by a gas which exits into the production unit at an exit velocity, wherein the entry velocity is greater than the exit velocity.
摘要:
An injector insert pipe is arranged in the gas channel of a nozzle for injecting oxygen-containing gas into a pig iron production unit, wherein an interspace which surrounds the pipe is present over the entire pipe length between the wall of the gas channel and the pipe outer wall . The pipe extends at least as far as the nozzle end face which contains the mouth of the gas channel. The pipe space is connected to an oxygen-containing gas feed line, and the interspace is connected to a protective gas supply line. In a process, oxygen-containing gas is fed into the pipe space, which after it has flowed through the pipe, enters the production unit at an entry velocity, and the interspace is simultaneously flowed through by a gas which exits into the production unit at an exit velocity, wherein the entry velocity is greater than the exit velocity.
摘要:
A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
摘要:
A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
摘要:
A method for producing molten material, wherein oxygen, reducing agents and iron that has been reduced in a reduction reactor are introduced into a melter gasifier. The reducing agent is gasified with the oxygen and the heat thereby produced melts the reduced iron. Cupola gas from the melter gasifier is used at least as a portion of the reduction gas, and reacted top gas is withdrawn from the reduction reactor. The aim of the invention is to increase energy efficiency and raw material efficiency as well as productivity while at the same time obtaining metallurgically improved properties of the product. For this purpose, at least a portion of the top gas is branched off from the line for the withdrawal of the top gas from the reduction reactor and is returned via at least one return line leading to the melter gasifier and is introduced into the melter gasifier.
摘要:
A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.
摘要:
A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.