摘要:
Providing for a paradigm shift in block-level abstraction for storage devices is described herein. At a block-level, storage is characterized as a variable size data record, rather than a fixed size sector. In some aspects, the variable size data record can comprise a variable binary key-data pair, for addressing and identifying a variable size block of data, and for dynamically specifying the size of such block in terms of data storage. By changing the key or data values, the location, identity or size of block-level storage can be modified. Data records can be passed to and from the storage device to facilitate operational commands over ranges of such records. Block-level data compression, space management and transactional operations are provided, mitigating a need of higher level systems to characterize underlying data storage for implementation of such operations.
摘要:
Providing for a paradigm shift in block-level abstraction for storage devices is described herein. At a block-level, storage is characterized as a variable size data record, rather than a fixed size sector. In some aspects, the variable size data record can comprise a variable binary key-data pair, for addressing and identifying a variable size block of data, and for dynamically specifying the size of such block in terms of data storage. By changing the key or data values, the location, identity or size of block-level storage can be modified. Data records can be passed to and from the storage device to facilitate operational commands over ranges of such records. Block-level data compression, space management and transactional operations are provided, mitigating a need of higher level systems to characterize underlying data storage for implementation of such operations.
摘要:
Processes for presenting a current state of a device having device storage connected with a host system are provided. In some processes, device manufacturers or vendors define a set of operational states of a device and provide user interface (UI) elements of a custom representation of each state through information stored in the device storage. Initially, the set of states of the device and UI elements associated with each state are received from the device storage. Information regarding a current state is received from the device, and a representation of the current state, which includes the received UI elements, is presented on the host system. In other processes, UI elements of a representation of each state are obtained from a remote system using device identification information. In other processes, UI elements from the device, from the host system, and/or from a remote system are combined to form a state representation.
摘要:
An integrity unit can be calculated from a first data unit, and a first storage device can be requested to store the first data unit. A second storage device, which can be separate from and/or a different type of device from the first storage device, can be requested to store metadata, which includes the integrity unit, in nonvolatile memory. Also, a second data unit can be received from the first storage device in response to a request for the first data unit. The integrity unit can be received from the second storage device, and the second data unit and the integrity unit can be analyzed to determine whether the second data unit matches the first data unit. Alternatively, a first integrity unit can be stored in a metadata region of a nonvolatile memory block, where the block also stores the data from which the first integrity unit was calculated.
摘要:
Providing for analysis of artifacts of electronic devices to generate data that is substantially unique to a particular device or to a class of devices is described herein. In some aspects, analyzed artifacts are chosen based on reliable reproducibility of such data over many analyses. The substantially unique data can be associated with a particular electronic device(s) to distinguish such devices from other devices. In some aspects, the generated data is first transformed into an identifier, such as a number, word, string of data, etc., to distinguish the electronic device in remote communication, to provide a key in an encryption/decryption algorithm, and so on. The data can be reproduced by reanalyzing the artifacts, and thus need not be stored for future consumption, mitigating risks involved in storing sensitive data.
摘要:
A mechanism and a storage device are provided for registering a component of a computing device, with a user-removably attached storage device and managing sessions between the component and the storage device. The storage device may record time information regarding a beginning and an ending of an activity session with the component. The storage device may determine whether at least a logical block address range of a storage device medium, registered by the component, may have been modified by a different component, since a last session with the component. When the storage device indicates to the component that at least the logical block address range of the medium has not been modified since the last session, the component may trust contents of the medium. The computing device may provide time information to the storage device, such that the storage device may determine whether management operations are to be performed.
摘要:
One or more functions are exposed by a mobile device to a host connected to the mobile device. A function of the one or more functions is executed at the mobile device in response to a request from the host, wherein the function is associated with a host task. The result of the function is returned to the host.
摘要:
An access control device can be communicationally coupled to a storage device and can control access thereto. The access control device can comprise information, such as identities of authorized entities, to enable the access control device to independently determine whether to provide access to an associated storage device. Alternatively, the access control device can comprise information to establish a secure connection to an authorization computing device and the access control device can implement the decisions of the authorization computing device. The access control device can control access by instructing a storage device to execute specific firmware instructions to prevent meaningful responses to data storage related requests. The access control device can also comprise storage-related cryptographic information utilized by the storage device to encrypt and decrypt data. In such a case, the access control device can control access by not releasing the storage-related cryptographic information to the storage device.
摘要:
A storage system can comprise multiple storage devices with differing characteristics, including differing power-related characteristics. A storage power manager can redirect Input/Output (I/O) communications to storage devices to maximize the power efficiency of the storage system. The storage power manager can reference metadata associated with the data of an I/O request, as well as power-related data, including continuously varying data and storage device characteristics, to select one or more storage devices to which to redirect the I/O. The storage power manager can also move or copy data between storage devices to facilitate maximum utilization of power efficient storage devices with limited storage capacity and to enable the placing of one or more storage devices into a reduced power consuming state. The moving or copying of data can be performed with reference to lifecycle information to identify data that has changed since a storage device was last active.
摘要:
A first device discovers the capabilities of a second device. The first device determines which of the first device and the second device is to execute a controlling boot image based at least in part on the capabilities of the first device and the second device. A first boot image is executed by the first device when the first device is determined to execute the controlling boot image, the second device to be a resource for the first boot image. The first device sends a second boot image stored on the first device to the second device when the second device is determined to execute the controlling boot image, wherein the first device to be a resource for the second boot image.