摘要:
Dynamic sampling systems for fabrication with inspection control are provided. In embodiments of a fabrication system comprising a processing tool, inspection tool, and a controller, the processing tool performs a fabrication process on a workpiece associated with identification information. The inspection tool performs an inspection step on the workpiece. The controller, coupled to the processing and inspection tools, determines whether the processing tool corresponds to an inspection result obtained during a preset time period, and determines whether the workpiece is to be inspected by the inspection tool accordingly.
摘要:
A system for managing quality control in a manufacturing plant for processing lots of work in process (WIP) for at least one product, comprises a manufacturing process which includes a manufacturing executive system (MES) which provides inspection data to a statistical process control (SPC) database, and an SPC analyzer for analyzing the inspection data and providing a sampling rate rule output to a sampling rate database. A server supplies the sampling rate rule to the MES. The MES tests a condition as to whether a lot of WIP should be sampled. If the condition is met, then provide an inspect control signal for inspection to the plant for inspecting the lot. If the condition is not met, then branch away from the control signal to provide an alternative control signal to pass on to the next process step in the plant.
摘要:
A FOUP (front opening unified pod) is disposed with a plurality of supporting pieces, the positions of which are calibrated to be symmetrical for the supporting pieces to horizontally support wafers in the pod, and with an OHT pad (Overhead Hoist Transport pad), a major function of which is to evenly distribute the weight of the FOUP and the wafers so that the transportation of the FOUP and the wafers by the OHT head can be further stabilized and more weight can be loaded to meet the demands of the process.
摘要:
A Front Opening Unified Pod (FOUP) has a pair of latch structures, and the latch structures install in a door of the FOUP. The latch structures use a circular rotary turntable to drive a pair of sliding devices, let the latch structures can lock or unlock more stabilized, and use sliding rollers respectively disposed on the sliding devices to prevent the generation of dusts.
摘要:
A method includes spinning a semiconductor wafer about an axis normal to a major surface of the wafer. The wafer is translated in a direction parallel to the major surface with an oscillatory motion, while spinning the wafer. A material is sprayed from first and second nozzles or orifices at respective first and second locations on the major surface of the wafer simultaneously while spinning the wafer and translating the wafer.
摘要:
A FOUP (front opening unified pod) is disposed with a plurality of supporting pieces, the positions of which are calibrated to be symmetrical for the supporting pieces to horizontally support wafers in the pod, and with an OHT pad (overhead hoist transport pad), a major function of which is to evenly distribute the weight of the FOUP and the wafers so that the transportation of the FOUP and the wafers by the OHT head can be further stabilized and more weight can be loaded to meet the demands of the process.
摘要:
A process of cleaning a semiconductor device fabrication equipment is provided. In one embodiment, the semiconductor device fabrication equipment is placed in a chamber; a fluid is introduced into the chamber; a pressure and temperature of the fluid is controlled to bring the fluid to a supercritical state; the semiconductor device fabrication equipment is cleaned by having the supercritical fluid contact the semiconductor device fabrication equipment; the supercritical fluid is removed from the chamber; and the semiconductor device fabrication equipment is removed from the chamber.
摘要:
A method is described for applying Optical Proximity Correction to corners and line ends in a pattern having critical dimensions in the sub micron region. Segments of curves are used to approximate corners and line ends in a pattern. The normal vector to the curve and area vector are then determined for all points on the segment of the curve used to approximate the pattern feature. The area vector has the same direction as the normal vector and a magnitude equal to the distance between the curve and the undistorted pattern. An optical proximity correction vector is then determined as the sum of a first scaler function multiplied by the unit normal vector and a second scaler function multiplied by the area vector. Next an optimum optical proximity correction shape is determined by moving the curve a distance and direction equal to the optical proximity correction vector. The optimum proximity correction shape is then approximated using regular geometric shapes, rectangles and triangles, to form an optical proximity corrected pattern. A mask of the optical proximity corrected pattern can be formed using electron beam methods without requiring excessive electron beam time.