Abstract:
A method for determining a location of a client device in a wireless network including the client device and at least three network devices, each of the three network devices having a known location comprises a pairwise exchanges of messages between at least three different pairs of network devices of said at least three network devices. In the pairwise exchange messages, wherein in a pairwise message exchange time difference information of the time difference between reception of a message and subsequent transmission of a message is included. This time difference information is used in the determination of the location of the client device.
Abstract:
A coding and modulation apparatus and method are presented, particularly for use in a system according to IEEE 802.11. The apparatus comprises an encoder configured to encode input data into cell words according to a low density parity check code, LDPC, and a modulator configured to modulate said cell words into constellation values of a non-uniform constellation and to assign bit combinations to constellation values of the used non-uniform constellation, wherein said modulator is configured to use, based on the PHY mode, the total number M of constellation points of the constellation and the code rate, a particular non-uniform constellation.
Abstract:
Communication devices and corresponding methods for RF-based communication and position determination are disclosed. An initiator communication device (1) comprises an antenna unit (10) configured to transmit and receive RF signals, a beamforming unit (11) configured to perform beamforming and to control the antenna unit to transmit and/or receive RF signals using one or more selected beams, a control unit (12) configured to control the beamforming unit (11) in a training phase to perform beamforming for determining an initiator line of sight (LOS), beam to a responder communication device (2), and a processing unit (13) configured to determine the initiator LOS beam and/or initiator angular information of the initiator LOS beam and to determine the position of said communication device using the determined initiator LOS beam and/or initiator angular information in a measurement phase.
Abstract:
A communications device is provided including a transmitter unit configured to transmit at least two transmit signals via a transmission channel; a precoder unit configured to beamform the transmit signals based on a precode matrix that is adapted to reduce a signal level at at least one location in an area of the transmission channel; and an amplifier adapted to amplify at least one of the transmit signals to a value that results in a signal level at the at least one location that is below a predetermined signal level. A corresponding method for transmitting at least two parallel transmit signals is provided as well.
Abstract:
In a MIMO communications system a first communications device applies beamforming to a complete transmission packet including both synchronization data and either payload data or training symbols. A second communications device evaluates the beamformed synchronization data and determines and transmits a feedback information indicating minimum required synchronization data and/or a minimum number of training symbols. The first communications device tailors the synchronization data and/or number of training symbols on the basis of the feedback information. Beamforming the complete transmission packet facilitates signal suppression at defined locations. When the channel properties change, the second communications device may provide further channel state information to adapt beamforming in the first communications device without transmission of not beamformed training symbols. The communications system may be a powerline telecommunications system.
Abstract:
In a MIMO communications system a first communications device applies beamforming to a complete transmission packet including both synchronization data and either payload data or training symbols. A second communications device evaluates the beamformed synchronization data and determines and transmits a feedback information indicating minimum required synchronization data and/or a minimum number of training symbols. The first communications device tailors the synchronization data and/or number of training symbols on the basis of the feedback information. Beamforming the complete transmission packet facilitates signal suppression at defined locations. When the channel properties change, the second communications device may provide further channel state information to adapt beamforming in the first communications device without transmission of not beamformed training symbols. The communications system may be a powerline telecommunications system.
Abstract:
Communication devices and corresponding methods for RF-based communication and position determination are disclosed. An initiator communication device (1) comprises an antenna unit (10) configured to transmit and receive RF signals, a beamforming unit (11) configured to perform beamforming and to control the antenna unit to transmit and/or receive RF signals using one or more selected beams, a control unit (12) configured to control the beamforming unit (11) in a training phase to perform beamforming for determining an initiator line of sight, LOS, beam to a responder communication device (2), and a processing unit (13) configured to determine the initiator LOS beam and/or initiator angular information of the initiator LOS beam and to determine the position of said communication device using the determined initiator LOS beam and/or initiator angular information in a measurement phase.
Abstract:
A camera includes an optical system configured to record images based on light entering the optical system from an optical field of view, a radar system configured to obtain radar information of targets within a radar field of view that is overlapping with the optical field of view, the radar information including one or more of a distance information indicating the distance of targets with respect to the camera, a speed information indicating the speed of targets with respect to the camera and dimension information indicating a dimension of targets, and a control unit configured to control at least one parameter of the optical system based on the obtained radar information.
Abstract:
A coding and modulation apparatus and method are presented, particularly for use in a system according to IEEE 802.11. The apparatus comprises an encoder configured to encode input data into cell words according to a low density parity check code, LDPC, and a modulator configured to modulate said cell words into constellation values of a non-uniform constellation and to assign bit combinations to constellation values of the used non-uniform constellation, wherein said modulator is configured to use, based on the PHY mode, the total number M of constellation points of the constellation and the code rate, a particular non-uniform constellation.
Abstract:
A coding and modulation apparatus and method are presented, particularly for use in a system according to IEEE 802.11. The apparatus comprises an encoder configured to encode input data into cell words according to a binary convolutional code, BCC, or a low density parity check code, LDPC, and a modulator configured to modulate said cell words into constellation values of a non-uniform constellation and to assign bit combinations to constellation values of the used non-uniform constellation, wherein said modulator is configured to use, based on the code used by the encoder, the total number M of constellation points of the constellation and the code rate.