摘要:
Apparatus for providing a fluid meniscus with variable configurations by means of electrowetting. A fluid chamber (5) holds two different fluids (A, B) separated by a meniscus (14) of which the edge, having different sides, is constrained by the fluid chamber. A first electrowetting electrode (2a) is arranged to act on a first side of the meniscus edge and a second electrowetting electrode (2a′) is arranged to act separately on a second side of the meniscus edge. Selected meniscus configurations can be formed by providing selected voltages to the first and second electrowetting electrodes respectively.
摘要:
To allow viewer to adapt audiovisual content to their attention level, the audiovisual signal processing arrangement (104, 106), comprising an audiovisual signal processing unit (104) arranged to receive from a control unit (106) at least one complexity setting value (S_Inf-c) specifying a complexity of information in an audiovisual signal, the audiovisual signal processing unit (104) being arranged to process an inputted audiovisual signal S(A, V) to decrease or increase its information complexity as determined by the complexity setting value (S_Inf-c), wherein the audiovisual signal processing unit (104) is arranged to process at least an audio component (A) of the audiovisual signal S(A, V).
摘要:
To allow better quality rendering of video on any display, a method is proposed of encoding, in addition to video data (VID), additional data (DD) comprising at least one change time instant (TMA—1) indicating a change in time of a characteristic luminance (CHRLUM) of the video data, which characteristic luminance summarizes the set of luminances of pixels in an image of the video data, the method comprising: —generating on the basis of the video data (VID) descriptive data (DED) regarding the characteristic luminance variation of the video, the descriptive data comprising at least one change time instant (TMA—1), and—encoding and outputting the descriptive data (DED) as additional data (DD).
摘要:
A display apparatus for presenting an image comprises an image receiver (101) for receiving an image to be displayed. An image analyzer (103) performs a local image profile analysis on at least a first region of the image to determine a pixel value spatial variation characteristic. The image analyzer (103) is coupled to a scaling processor (105) which scales at least a second region of the image in response to the pixel value spatial variation characteristic. The scaling processor (105) is coupled to a presentation controller (107) which presents the scaled image. The scaling may specifically be adjusted dependent on a sharpness or spatial frequency characteristics of the image. The invention may allow an improved adaptation of the presentation of one or more images to the specific characteristics of the image(s).
摘要:
To allow viewer to adapt audiovisual content to their attention level, the audiovisual signal processing arrangement (104, 106), comprising an audiovisual signal processing unit (104) arranged to receive from a control unit (106) at least one complexity setting value (S_Inf-c) specifying a complexity of information in an audiovisual signal, the audiovisual signal processing unit (104) being arranged to process an inputted audiovisual signal S(A, V) to decrease or increase its information complexity as determined by the complexity setting value (S_Inf-c), wherein the audiovisual signal processing unit (104) is arranged to process at least an audio component (A) of the audiovisual signal S(A, V).
摘要:
To have an optimal use of a display for displaying particular, e.g. chromatically biased, image content, described is a method of calculating an optimal first and second backlight driving level, for a color display having a backlight which can be controlled to produce a first amount of light with a first spectrum in accordance with the first backlight driving level and a second amount of light with a second spectrum in accordance with the second backlight driving level, and the color display having a first and second light transmission valve plus color filter combination, arranged to create from the backlight spectra a respective first and second color primary light output, the chromaticity of at least one of the color primaries depending on the first and second backlight driving level, wherein the first and second backlight driving levels are determined so that a gamut of at least a part of a picture to be displayed is optimally covered by the gamut realizable by the display with the first and second backlight driving level.
摘要:
An apparatus generates an image coding signal comprising for each image a first pixelized picture and a second pixelized picture having a luminance component and a chroma component. The apparatus comprises a first picture processor (203, 211) which includes image encoding data for an encoded first image in the first pixelized picture. A second picture processor (205, 207, 209, 211) includes dynamic range extension data in the second pixelized picture. The dynamic range extension data may be dynamic range extension data included in a chroma component of the second pixelized picture for generating an increased dynamic range image on the basis of the encoded first image. The compensation data may e.g. be compensation data for correcting another LDR-to-HDR transform, e.g. a prefixed global gamma transformation. The dynamic range extension data may be included in a luminance component and comprise data representing a dynamic range extension transform for generating an increased dynamic range image from the encoded first image.
摘要:
A device and method for rendering content that includes analyzing previous and/or subsequent temporal portions of a content signal to determine elements that are positionally related to elements of a current portion of the content signal. The current portion of the content signal is rendered on a primary rendering device, such as a television, while the elements that are positionally related to elements of a current portion of the content signal are concurrently rendered on a secondary rendering device. In one embodiment, the elements that are rendered on the secondary rendering device may be rendered at a lower resolution and/or lower frame rate than the rendered current portion of the content signal. In one embodiment, at least one of previous and subsequent temporal portions of a content signal may be analyzed at a lower resolution than the content signal.
摘要:
The present invention relates to a method, image processing device, image display device including an image processing device and computer program product for changing the size of presentation of an image data stream (X) provided in a image data format. The image processing device (12) comprises at least one image decoding unit (22) selecting at least parts of an image data stream (XO, XS) having a first original field of view to be presented in, and obtaining values of pixel regions from an area larger than the original field of view from the selected image data (XS). The image processing device changes field of view by calculating an image to be displayed conforming to a second field of view based on the obtained data and values. Image data intended to be presented in the first field of view can then be displayed in the second field of view.
摘要翻译:本发明涉及一种图像处理装置,包括图像处理装置和计算机程序产品的图像显示装置,用于改变以图像数据格式提供的图像数据流(X)的显示尺寸。 图像处理装置(12)包括至少一个图像解码单元(22),其至少选择具有第一图像数据流的图像数据流(X SUB,X S S)的一部分 要从所选择的图像数据(X S S S S)中获得从原始视场大于的区域获得像素区域的值的原始视场。 图像处理装置通过基于获得的数据和值计算与第二视场一致的要显示的图像来改变视场。 然后可以在第二视场中显示旨在呈现在第一视场中的图像数据。
摘要:
The conversion unit (501) for processing an input video signal (Vin) to yield an output video signal (Vout) manifesting less color break-up when displayed on a temporal color display than the input video signal, the conversion unit comprises: an input (508) for a temporal color video signal;—a primary selection unit (511) arranged to obtain at least one picture-adaptive new color primary (IP) being determined striving for an optimization of a portion of a picture energy allocatable to the new color primary, in at least a picture region of the input video signal (Vin); and a color transformation unit (521) arranged to convert the input video signal to the output video signal represented in a color space comprising the at least one new color primary (IP), at least in the at least one picture region.