摘要:
When forming sophisticated high-k metal gate electrode structures on the basis of a threshold voltage adjusting semiconductor alloy, a highly efficient in situ process technique may be applied in order to form a recess in dedicated active regions and refilling the recess with a semiconductor alloy. In order to reduce or avoid etch-related irregularities during the recessing of the active regions, the degree of aluminum contamination during the previous processing, in particular during the formation of the trench isolation regions, may be controlled.
摘要:
In sophisticated semiconductor devices, high-k metal gate electrode structures may be provided in an early manufacturing stage wherein the threshold voltage adjustment for P-channel transistors may be accomplished on the basis of a threshold voltage adjusting semiconductor alloy, such as a silicon/germanium alloy, for long channel devices, while short channel devices may be masked during the selective epitaxial growth of the silicon/germanium alloy. In some illustrative embodiments, the threshold voltage adjustment may be accomplished without any halo implantation processes for the P-channel transistors, while the threshold voltage may be tuned by halo implantations for the N-channel transistors.
摘要:
When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.
摘要:
When forming sophisticated high-k metal gate electrode structures on the basis of a threshold voltage adjusting semiconductor alloy, a highly efficient in situ process technique may be applied in order to form a recess in dedicated active regions and refilling the recess with a semiconductor alloy. In order to reduce or avoid etch-related irregularities during the recessing of the active regions, the degree of aluminum contamination during the previous processing, in particular during the formation of the trench isolation regions, may be controlled.
摘要:
When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage on the basis of a silicon/germanium semiconductor alloy for adjusting appropriate electronic conditions in the channel region, the efficiency of a strain-inducing embedded semiconductor alloy, such as a silicon/germanium alloy, may be enhanced by initiating a crystal growth in the silicon material of the gate electrode structure after the gate patterning process. In this manner, the negative strain of the threshold voltage adjusting silicon/germanium alloy may be reduced or compensated for.
摘要:
When forming high-k metal gate electrode structures in a semiconductor device on the basis of a basic transistor design, undue exposure of sensitive materials at end portions of the gate electrode structures of N-channel transistors may be avoided, for instance, prior to and upon incorporating a strain-inducing semiconductor material into the active region of P-channel transistors, thereby contributing to superior production yield for predefined transistor characteristics and performance.
摘要:
When forming sophisticated high-k metal gate electrode structures in an early manufacturing stage on the basis of a silicon/germanium semiconductor alloy for adjusting appropriate electronic conditions in the channel region, the efficiency of a strain-inducing embedded semiconductor alloy, such as a silicon/germanium alloy, may be enhanced by initiating a crystal growth in the silicon material of the gate electrode structure after the gate patterning process. In this manner, the negative strain of the threshold voltage adjusting silicon/germanium alloy may be reduced or compensated for.
摘要:
Embodiments of methods for fabricating the semiconductor devices are provided. The method includes forming a layer of spacer material over a semiconductor region that includes a first gate electrode structure and a second gate electrode structure. Carbon is introduced into a portion of the layer covering the semiconductor region about the first gate electrode structure or the second gate electrode structure. The layer is etched to form a first sidewall spacer about the first gate electrode structure and a second sidewall spacer about the second gate electrode structure.
摘要:
In sophisticated semiconductor devices, the defect rate that may typically be associated with the provision of a silicon/germanium material in the active region of P-channel transistors may be significantly decreased by incorporating a carbon species prior to or during the selective epitaxial growth of the silicon/germanium material. In some embodiments, the carbon species may be incorporated during the selective growth process, while in other cases an ion implantation process may be used. In this case, superior strain conditions may also be obtained in N-channel transistors.
摘要:
Methods of forming transistor devices having an increased gate width dimension are disclosed. In one example, the method includes forming an isolation structure in a semiconducting substrate, wherein the isolation structure defines an active region in the substrate, performing an ion implantation process on the isolation structure to create a damaged region in the isolation structure and, after performing the implantation process, performing an etching process to remove at least a portion of the damaged region to define a recess in the isolation structure, wherein a portion of the recess extends below an upper surface of the substrate and exposes a sidewall of the active region. The method further includes forming a gate insulation layer above the active region, wherein a portion of the insulation layer extends into the recess, and forming a gate electrode above the insulation layer, wherein a portion of the gate electrode extends into the recess.