摘要:
The present invention is directed to organic light emitting devices comprised of a heterostructure for producing electroluminescence, wherein the heterostructure includes a hole injection enhancement layer between a hole transporting layer and an indium tin oxide anode layer. The hole injection enhancement layer may be comprised of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) (BTQBT), or other suitable, rigid organic materials. The present invention is further directed to methods of fabricating such devices.
摘要:
A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure. The devices are configured as stacked to provide a staircase profile whereby each device is separated from the other by a thin transparent conductive contact layer to enable light emanating from each of the devices to pass through the semitransparent contacts and through the lower device structures while further enabling each of the devices to receive a selective bias. The devices are substantially transparent when de-energized, making them useful for heads-up display applications.
摘要:
Organic photosensitive optoelectronic devices (“OPODs”) are disclosed which include an exciton blocking layer to enhance device efficiency. Single heterostructure, stacked and wave-guide type embodiments are disclosed. Photodetector OPODs having multilayer structures and an exciton blocking layer are also disclosed. Guidelines for selection of exciton blocking layers are provided.
摘要:
An organic photosensitive optoelectronic device having a plurality of cells disposed between a first electrode and a second electrode. Each cell includes a photoconductive organic hole transport layer adjacent to a photoconductive organic electron transport layer. A metal or metal substitute is disposed between each of the cells. At least one exciton blocking layer is disposed between the first electrode and the second electrode.
摘要:
A system comprising a plurality of organic photovoltaic cells arranged in a stack disposed between a first electrode and a second electrode, and a resistive load electrically connected across the first electrode and the second electrode. Each cell comprises a rectifying junction at an interface of organic semiconductor materials. There is metal or metal substitute disposed in the stack between each of the cells. At least a first cell and a second cell of the plurality of organic photovoltaic cells have different absorption characteristics. Photocurrent from the plurality of organic photovoltaic cells energizes the resistive load.
摘要:
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
摘要:
The present invention relates to OLEDs utilizing direct injection to the triplet state. The present invention also relates to OLEDs utilizing resonant injection and/or stepped energy levels.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (ĈN)2—Ir—(N̂N). (ĈN) and (N̂N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
摘要:
Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (C^N)2—Ir—(N^N). (C^N) and (N^N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.