摘要:
Circuits for adjusting the duty cycle of a clock(s) signal include a negative feedback loop for applying an offset signal to the uncorrected clock signal(s). The offset signal, which corresponds to a duty cycle error of the corrected clock signal(s), adjusts the slicing level of the uncorrected clock signal(s) to cause the duty cycle error to converge toward a predetermined value, for example, zero. The techniques may be used to adjust the duty cycle error of differential clock signals as well as single-ended clock signals.
摘要:
An organic light emitting device (OLED) is disclosed for which the hole transporting layer, the electron transporting layer and/or the emissive layer, if separately present, is comprised of a non-polymeric material. A method for preparing such OLED's using vacuum deposition techniques is further disclosed.
摘要:
Light emitting devices including at least one pixel comprising a first light emitting stack and a second light emitting stack placed side-by-side. The first and second light emitting stacks each comprise a first OLED and a second OLED over the first OLED. The first light emitting stack further includes a downconversion layer under the first OLED. Together, the first and second stacks are capable of emitting any visible color of light.
摘要:
Provided is a nano structure composite and a method of manufacturing the same. More specifically, a nano structure composite that includes a substrate, a first layer formed of carbon nano structures on the substrate, and a second layer formed of metal oxide nano structures on the first layer, and a method of manufacturing the same are provided. When the nano structure composite according to the present invention is used, a device having a field emission characteristic higher efficiency than a conventional device can be realized, and also, the device can be manufactured at a lower temperature and at a lower pressure. Thus, manufacturing cost can be reduced and a large scale process can be performed.
摘要:
An organic light emitting device (OLED) is disclosed for which the hole transporting layer, the electron transporting layer and/or the emissive layer, if separately present, is comprised of a non-polymeric material. A method for preparing such OLED's using vacuum deposition techniques is further disclosed.
摘要:
A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure. The devices are configured as stacked to provide a staircase profile whereby each device is separated from the other by a thin transparent conductive contact layer to enable light emanating from each of the devices to pass through the semitransparent contacts and through the lower device structures while further enabling each of the devices to receive a selective bias. The devices are substantially transparent when de-energized, making them useful for heads-up display applications.
摘要:
A read-only memory (ROM) is disclosed that uses the presence or absence of linear passive electrical elements, such as resistors or capacitors, to encode zeros and ones, permitting a large-area ROM to be fabricated, possibly on a flexible substrate. The ROM includes a substrate, a plurality of row conductors insulated from each other and at least partially layered on a portion of the substrate; a plurality of column conductors insulated from each other and from the row conductors and at least partially layered above or below a portion of the plurality of row conductors, a plurality of amplifiers electrically connected to the column conductors, and at least one linear passive element attached between the row conductors and the column conductors. An amplifier connected to a column conductor has an input impedance much lower than the combined parallel impedance of the linear passive elements connected to that column, thus comprising a virtual ground, and is operable to output a first logical state when one of the linear passive elements is electrically connected between one of the row conductors and one of the column conductors, and operable to output a second local state when said one of the linear passive elements is absent between one of the row conductors and one of the column conductors. The resistive or capacitive arrays can be made into low-cost imagers if the resistors/capacitors are sensitive to electromagnetic radiation or mechanical pressure.
摘要:
A read-only memory (ROM) is disclosed that uses the presence or absence of linear passive electrical elements, such as resistors or capacitors, to encode zeros and ones, permitting a large-area ROM to be fabricated, possibly on a flexible substrate. The ROM includes a substrate, a plurality of row conductors insulated from each other and at least partially layered on a portion of the substrate; a plurality of column conductors insulated from each other and from the row conductors and at least partially layered above or below a portion of the plurality of row conductors, a plurality of amplifiers electrically connected to the column conductors, and at least one linear passive element attached between the row conductors and the column conductors. An amplifier connected to a column conductor has an input impedance much lower than the combined parallel impedance of the linear passive elements connected to that column, thus comprising a virtual ground, and is operable to output a first logical state when one of the linear passive elements is electrically connected between one of the row conductors and one of the column conductors, and operable to output a second local state when said one of the linear passive elements is absent between one of the row conductors and one of the column conductors. The resistive or capacitive arrays can be made into low-cost imagers if the resistors/capacitors are sensitive to electromagnetic radiation or mechanical pressure.
摘要:
A multicolor organic light emitting device employs vertically stacked layers of double heterostructure devices which are fabricated from organic compounds. The vertical stacked structure is formed on a glass base having a transparent coating of ITO or similar metal to provide a substrate. Deposited on the substrate is the vertical stacked arrangement of three double heterostructure devices, each fabricated from a suitable organic material. Stacking is implemented such that the double heterostructure with the longest wavelength is on the top of the stack. This constitutes the device emitting red light on the top with the device having the shortest wavelength, namely, the device emitting blue light, on the bottom of the stack. Located between the red and blue device structures is the green device structure. The devices are configured as stacked to provide a staircase profile whereby each device is separated from the other by a thin transparent conductive contact layer to enable light emanating from each of the devices to pass through the semitransparent contacts and through the lower device structures while further enabling each of the devices to receive a selective bias. The devices are substantially transparent when de-energized, making them useful for heads-up display applications.
摘要:
An organic light emitting device structure includes a substrate, a first electrically conductive layer formed over the substrate wherein the first electrically conductive layer has a positive polarity, and a transparent organic light emitting device formed over the first electrically conductive layer. The structure also includes a transparent electrically conductive metal layer formed over the transparent organic light emitting device wherein the metal has a work function less than 4 eV, and a second electrically conductive layer formed over the transparent electrically conductive metal layer, wherein the second electrically conductive layer has a negative polarity, and wherein the second electrically conductive layer comprises a material selected from the group consisting of a transparent electrically conductive oxide and a transparent electrically conductive polymer.