摘要:
Polyolefins may be prepared using a cocatalyst conforming to the formula: AIRz(Xz)nLzm wherein Rz is a linear or branched organic moiety having at least 5 carbons and Xz is a linear or branched organic moiety having at least 5 carbons or a heterocyclic moiety having at least 4 atoms and can be anionic or di-anionic. The aluminum complex may also be in the form of an adduct complex where Lz is a Lewis base and m=1-3. The cocatalyst Rz components are selected such that they do not react with water under polymerization conditions to form a species that is highly soluble in the polymerization diluent. Use of the specified cocatalyst reduces fouling during metallocene-catalyzed runs and “post-metallocene hangover” when the same production equipment is transitioned to non-metallocene catalyst runs using catalysts such as chromium.
摘要:
Methods of forming polyolefins and catalysts are described herein. Such methods generally include forming Ziegler-Natta catalyst compounds in the absence of one or more blended compounds typically used to form such catalyst.
摘要:
Methods of forming polyolefins and catalysts are described herein. Such methods generally include forming Ziegler-Natta catalyst compounds in the absence of one or more blended compounds typically used to form such catalyst.
摘要:
Polyolefins may be prepared using a cocatalyst conforming to the formula: AIRz(Xz)nLzm wherein Rz is a linear or branched organic moiety having at least 5 carbons and Xz is a linear or branched organic moiety having at least 5 carbons or a heterocyclic moiety having at least 4 atoms and can be anionic or di-anionic. The aluminum complex may also be in the form of an adduct complex where Lz is a Lewis base and m=1-3. The cocatalyst Rz components are selected such that they do not react with water under polymerization conditions to form a species that is highly soluble in the polymerization diluent. Use of the specified cocatalyst reduces fouling during metallocene-catalyzed runs and “post-metallocene hangover” when the same production equipment is transitioned to non-metallocene catalyst runs using catalysts such as chromium.
摘要:
A Ziegler-Natta type catalyst component can be produced by a process comprising contacting a magnesium dialkoxide compound with a halogenating agent to form a reaction product A, and contacting reaction product A with a first, second and third halogenating/titanating agents. Catalyst components, catalysts, catalyst systems, polyolefin, products made therewith, and methods of forming each are disclosed. The reaction products can be washed with a hydrocarbon solvent to reduce titanium species [Ti] content to less than about 100 mmol/L.
摘要:
Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
摘要:
Catalyst components, methods of forming catalyst compositions, polymerization processes utilizing the catalyst compositions and polymers formed thereby are described herein. The methods generally include providing a magnesium dialkoxide compound, contacting the magnesium dialkoxide compound with a first agent to form a solution of a reaction product “A1”, contacting the solution of reaction product “A1” with a reducing agent to form a reduced reaction product “A2”, contacting reduced reaction product “A2” with a second agent to form a solid reaction product “A3”, contacting solid reaction product “A3” with a metal halide to form reaction product “B” and contacting reaction product “B” with an organoaluminum compound to form a catalyst component.
摘要:
Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology. The novel catalyst components may be used to prepare polymers, and end-use articles therefrom, having desirable properties. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. The process enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology. The novel catalyst components may be used to prepare polymers, and end-use articles therefrom, having desirable properties. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology. The novel catalyst components may be used to prepare polymers, and end-use articles therefrom, having desirable properties.