摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
摘要:
Systems and methods permit use of efficient solid state emitters for broad spectrum continuous spectrum lighting defined by illumination data. The illumination data, which can be sold as a commercial product, can be recorded or authored and include spectral, temporal, and spatial information. Intensities of individual emitters such as LEDs can be controlled through a combination of pulse width modulation (PWM) and amplitude modulation (AM) of drive currents. The combination of PWM and AM permits fine tuning of the spectrum of emissions and creation of free space optical data channels.
摘要:
A method of utilizing a light replication luminaire to match the spectral characteristics of light that is output from the luminaire to the spectral characteristics of a target light spectrum is provided. In one example, the method permits the user to assign a weight to one or more characteristics of the target light spectrum to be replicated. A best approximation of the target light spectrum is then determined, taking into account the weight assigned to each characteristic. In another example, the target light spectrum is provided to the luminaire by the user through the specification of various characteristics of the target light spectrum.
摘要:
Systems and methods permit use of efficient solid state emitters for broad spectrum continuous spectrum lighting defined by illumination data. The illumination data, which can be sold as a commercial product, can be recorded or authored and include spectral, temporal, and spatial information. Intensities of individual emitters such as LEDs can be controlled through a combination of pulse width modulation (PWM) and amplitude modulation (AM) of drive currents. The combination of PWM and AM permits fine tuning of the spectrum of emissions and creation of free space optical data channels.
摘要:
Systems and methods permit use of efficient solid state emitters for broad spectrum continuous spectrum lighting defined by illumination data. The illumination data, which can be sold as a commercial product, can be recorded or authored and include spectral, temporal, and spatial information. Intensities of individual emitters such as LEDs can be controlled through a combination of pulse width modulation (PWM) and amplitude modulation (AM) of drive currents. The combination of PWM and AM permits fine tuning of the spectrum of emissions and creation of free space optical data channels.
摘要:
A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.