摘要:
An lighting source includes a driver for outputting electrical power in response to external electrical power, wherein the driver generates heat in response thereto, a lamp coupled to the driver, for outputting light in response to the electrical power, wherein the lamp generates heat in response thereto, a first heat sink physically coupled to the driver for receiving and dissipating heat there from, a second heat sink physically coupled to the light for receiving heat and dissipating heat there from, and an insulating portion disposed between the first heat sink and the second heat sink, wherein the insulating portion is configured to inhibit heat from the lamp from being transferred to the driver.
摘要:
A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
摘要:
The amount of usefully captured light in an optical system may be increased by concentrating light in a region where it can be collected by the optical system. A light emitting device may include a substrate and a plurality of semiconductor layers. In some embodiments, a reflective material overlies a portion of the substrate and has an opening through which light exits the device. In some embodiments, reflective material overlies a portion of a surface of the semiconductor layers and has an opening through which light exits the device. In some embodiments, a light emitting device includes a transparent member with a first surface and an exit surface. At least one light emitting diode is disposed on the first surface. The transparent member is shaped such that light emitted from the light emitting diode is directed toward the exit surface.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
An LED pump light with multiple phosphors is described. LEDs emitting radiation at violet and/or ultraviolet wavelengths are used to pump phosphor materials that emit other colors. The LEDs operating in different wavelength ranges are arranged to reduce light re-absorption and improve light output efficiency.
摘要:
A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.
摘要:
A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.
摘要:
A method of forming a light emitting diode (LED) includes providing a temporary growth substrate that is selected for compatibility with fabricating LED layers having desired mechanical characteristics. For example, lattice matching is an important consideration. LED layers are then grown on the temporary growth substrate. High crystal quality is thereby achieved, whereafter the temporary growth substrate can be removed. A second substrate is bonded to the LED layers utilizing a wafer bonding technique. The second substrate is selected for optical properties, rather than mechanical properties. Preferably, the second substrate is optically transparent and electrically conductive and the wafer bonding technique is carried out to achieve a low resistance interface between the second substrate and the LED layers. Wafer bonding can also be carried out to provide passivation or light-reflection or to define current flow.
摘要:
A method of forming a light emitting diode (LED) includes providing a temporary growth substrate that is selected for compatibility with fabricating LED layers having desired mechanical characteristics. For example, lattice matching is an important consideration. LED layers are then grown on the temporary growth substrate. High crystal quality is thereby achieved, whereafter the temporary growth substrate can be removed. A second substrate is bonded to the LED layers utilizing a wafer bonding technique. The second substrate is selected for optical properties, rather than mechanical properties. Preferably, the second substrate is optically transparent and electrically conductive and the wafer bonding technique is carried out to achieve a low resistance interface between the second substrate and the LED layers. Wafer bonding can also be carried out to provide passivation or light-reflection or to define current flow.