Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
A sphincter treatment apparatus includes an energy delivery device introduction member including a proximal end with a first radius of curvature and a distal end with a second radius of curvature. The introduction member is configured to be introduced into the sphincter in a non-deployed state and to be expanded to a deployed state to at least partially expand the sphincter or an adjoining structure. An energy delivery device is coupled to the introduction member. A retainer member is coupled to the energy delivery device introduction member and configured to controllably position the introduction member in an orifice of the sphincter.
Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
Systems and method ablate motor nerve tissue by inserting an operative element connectable to an ablation energy generator into a defined percutaneous tissue region. The systems and methods apply stimulant energy in the defined percutaneous tissue region to stimulate targeted motor nerve tissue prior to ablation by the operative element. Application of the nerve ablation energy can permanently eliminate the function of a targeted motor nerve branch, to thereby inactivate a selected muscle. The muscle inactivation may, e.g., treat dystonias and other hyperfunction neuromuscular dysfunctions in the face and neck, such as torticollis, blepharospasm, and uncontrolled grimacing. The muscle inactivation may also provide cosmetic results, to eliminate or prevent aesthetically displeasing skin furrows, frowning wrinkles, or neck bands, which can arise from normal muscle contraction or prolonged exposure of the face to the sun.
Abstract:
Unified systems and methods enable control of the use and operation of a family of different treatment devices, to treat dysfunction in different regions of the body.
Abstract:
A method of forming a composite lesion pattern in a tissue region at or near a sphincter comprising providing a catheter having a plurality of energy delivery devices coupled to the catheter. The catheter is introduced at least partially into the sphincter. Energy is delivered from the energy delivery devices to produce the composite lesion pattern. The composite lesion pattern comprises a radial distribution of lesions about the tissue region and a longitudinal distribution of lesions along the tissue region.
Abstract:
A sphincter treatment apparatus includes an energy delivery device introduction member including a proximal end with a first radius of curvature and a distal end with a second radius of curvature. The introduction member is configured to be introduced into the sphincter in a non-deployed state and to be expanded to a deployed state to at least partially expand the sphincter or an adjoining structure. An energy delivery device is coupled to the introduction member. A retainer member is coupled to the energy delivery device introduction member and configured to controllably position the introduction member in an orifice of the sphincter.
Abstract:
Systems and methods treat a tissue region at or near a sphincter by deploying a carrier, which carries an electrode that can be advanced to penetrate tissue. Negative pressure is applied through a suction port on the carrier near the electrode, to draw tissue in the tissue region inward against the carrier. The systems and methods advance the electrode to penetrate tissue drawn against the carrier. The vacuum anchors the surrounding tissue and mediates against the “tenting” of tissue during electrode penetration. Without tenting, the electrode penetrates mucosal tissue fully, to obtain a desired depth of penetration.
Abstract:
Systems and methods that treat disorders of the gastrointestinal tract by applying one or more treatment agents to tissue at or near the region where abnormal neurological symptoms or abnormal tissue conditions exist. The treatment agent is selected to either disrupt the abnormal nerve pathways and/or to alleviate the abnormal tissue conditions. The treatment agent can include at least one cytokine and/or at least one vanilloid compound to evoke a desired tissue response. The systems and methods can be used a primary treatment modality, or as a neoadjuvent or adjuvant treatment modality.