摘要:
A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
摘要:
A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
摘要:
The method for producing carbon nanotubes employs a carbon source that contains carbon and is decomposed when heated and a catalyst on a support that serves as a catalyst for production of carbon nanotubes from the carbon source. The method includes a catalyst loading step in which the catalyst starting material is distributed over the support to load the catalyst onto the support, a synthesis step in which the carbon nanotubes are synthesized on the support, and a separating step in which a separating gas stream is distributed over the support to separate the carbon nanotubes from the support, wherein the catalyst loading step, the synthesis step and the separating step are carried out while keeping the support in a heated state and switching supply of the catalyst starting material, the carbon source and the separating gas stream.
摘要:
The method for producing carbon nanotubes of the invention employs a carbon source that contains carbon and is decomposed when heated and a catalyst that serves as a catalyst for production of carbon nanotubes from the carbon source, to synthesize the carbon nanotubes on a heated support placed in a reactor, the method comprising a catalyst loading step in which the catalyst starting material, as the starting material for the catalyst, is distributed over the support to load the catalyst onto the support, a synthesis step in which the carbon source is distributed over the support to synthesize the carbon nanotubes on the support, and a separating step in which a separating gas stream is distributed over the support to separate the carbon nanotubes from the support, wherein the catalyst loading step, the synthesis step and the separating step are carried out while keeping the support in a heated state and switching supply of the catalyst starting material, the carbon source and the separating gas stream.
摘要:
[Problems to be Solved] There is provided a method for production of a carbon nanotube, which allows for production of the carbon nanotube in a large scale and at a low cost.[Solution] The temperature of a catalyst loaded on a support is raised by heating the support and a raw material gas containing a carbon source is supplied on the catalyst to synthesize the carbon nanotube. The synthesized carbon nanotube is recovered, and after the recovery, the catalyst is subjected to a regeneration treatment to repeatedly utilize the support. Since the catalyst deteriorates, the catalyst is regenerated periodically or nonperiodically during the production. The regeneration treatment of the catalyst involves an oxidation treatment of the catalyst. Further, after the oxidation treatment, a reducing gas is fed to and brought into contact with the catalyst surface to reduce the catalyst. As the support, a honeycomb is used.
摘要:
[Problems to be Solved]There is provided a method for production of a carbon nanotube, which allows for production of the carbon nanotube in a large scale and at a low cost.[Solution]The temperature of a catalyst loaded on a support is raised by heating the support and a raw material gas containing a carbon source is supplied on the catalyst to synthesize the carbon nanotube. The synthesized carbon nanotube is recovered, and after the recovery, the catalyst is subjected to a regeneration treatment to repeatedly utilize the support. Since the catalyst deteriorates, the catalyst is regenerated periodically or nonperiodically during the production. The regeneration treatment of the catalyst involves an oxidation treatment of the catalyst. Further, after the oxidation treatment, a reducing gas is fed to and brought into contact with the catalyst surface to reduce the catalyst. As the support, a honeycomb is used.