Abstract:
An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
Abstract:
An integrated plant to generate chemical grade syngas from a steam biomass reforming in a multiple stage bio reforming reactor for use with either a high temperature or low temperature Fischer-Tropsch synthesis process to produce fuel from biomass is discussed. The first stage has a reactor to cause a chemical devolatilization of a biomass feedstock from the biomass feedstock supply lines into its constituent gases of CO, H2, CO2, CH4, tars, chars, and other components into a raw syngas mixture. A second stage performs further reforming of the raw syngas from the first stage into the chemical grade syngas by further applying heat and pressure to chemically crack at least the tars, reform the CH4, or a combination of both, into their corresponding syngas molecules. The second stage feeds the chemical grade syngas derived from the biomass feedstock to the downstream Fischer-Tropsch train to produce the fuel from the biomass. One or more recycle loops supply tail gas or FT product back into the plant.
Abstract:
A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.