Abstract:
A method, apparatus, and system for a solar-driven chemical plant are disclosed. Some embodiments may include a solar thermal receiver to absorb concentrated solar energy from an array of heliostats and a solar-driven chemical reactor. This chemical reactor may have multiple reactor tubes, in which particles of biomass may be gasified in the presence of a carrier gas in a gasification reaction to produce hydrogen and carbon monoxide products. High heat transfer rates of the walls and tubes may allow the particles of biomass to achieve a high enough temperature necessary for substantial tar destruction and complete gasification of greater than 90 percent of the biomass particles into reaction products including hydrogen and carbon monoxide gas in a very short residence time between a range of 0.01 and 5 seconds.
Abstract:
A multiple stage synthesis gas generation system is disclosed including a high radiant heat flux reactor, a gasifier reactor control system, and a Steam Methane Reformer (SMR) reactor. The SMR reactor is in parallel and cooperates with the high radiant heat flux reactor to produce a high quality syngas mixture for MeOH synthesis. The resultant products from the two reactors may be used for the MeOH synthesis. The SMR provides hydrogen rich syngas to be mixed with the potentially carbon monoxide rich syngas from the high radiant heat flux reactor. The combination of syngas component streams from the two reactors can provide the required hydrogen to carbon monoxide ratio for methanol synthesis. The SMR reactor control system and a gasifier reactor control system interact to produce a high quality syngas mixture for the MeOH synthesis.
Abstract:
A method, apparatus, and system for a solar-driven bio-refinery that may include a entrained-flow biomass feed system that is feedstock flexible via particle size control of the biomass. Some embodiments include a chemical reactor that receives concentrated solar thermal energy from an array of heliostats. The entrained-flow biomass feed system can use an entrainment carrier gas and supplies a variety of biomass sources fed as particles into the solar-driven chemical reactor. Biomass sources in a raw state or partially torrified state may be used, as long as parameters such as particle size of the biomass are controlled. Additionally, concentrated solar thermal energy can drive gasification of the particles. An on-site fuel synthesis reactor may receive the hydrogen and carbon monoxide products from the gasification reaction use the hydrogen and carbon monoxide products in a hydrocarbon fuel synthesis process to create a liquid hydrocarbon fuel.
Abstract:
A method, apparatus, and system for a solar-driven chemical plant that may include a solar thermal receiver having a cavity with an inner wall, where the solar thermal receiver is aligned to absorb concentrated solar energy from one or more of 1) an array of heliostats, 2) solar concentrating dishes, and 3) any combination of the two. Some embodiments may include a solar-driven chemical reactor having multiple reactor tubes located inside the cavity of solar thermal receiver, wherein a chemical reaction driven by radiant heat occurs in the multiple reactor tubes, and wherein particles of biomass are gasified in the presence of a steam (H2O) carrier gas and methane (CH4) in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the solar thermal energy from the absorbed concentrated solar energy in the multiple reactor tubes.
Abstract:
A chemical plant includes a radiant heat-driven chemical reactor having generally concentric reactor tubes with an inner tube and an outer tube located inside a cavity of a thermal receiver. Particles of biomass, or natural gas, and an entrainment gas are fed into the inner tube near a bottom of the tube. The biomass and the entrainment gas flow upward through the inner tube into an upper plenum, and then flow downward through an annular space between the inner tube and the outer tube. The concentric reactor tubes and the thermal receiver are configured to cooperate such that heat is radiantly transferred by primarily absorption and re-radiation to drive the biomass gasification reaction or natural gas reformation reaction of reactants flowing through the reactor tubes in the vertical sections of the reactor, and turbulent flow and mixing of the reactants occurs in the upper plenum part of the reactor.
Abstract:
A radiant heat-driven chemical reactor comprising a generally cylindrical pressure refractory lined vessel, a plurality of radiant heating tubes, and a metal tube sheet to form a seal for the pressure refractory lined vessel near a top end of the pressure refractory lined vessel. The metal tube sheet has a plurality of injection ports extending vertically through the metal tube sheet and into the refractory lined vessel such that biomass is injected at an upper end of the vessel between the radiant heating tubes, and the radiant heat is supplied to an interior of the plurality of radiant heating tubes. The radiant heat-driven chemical reactor is configured to 1) gasify particles of biomass in a presence of steam (H2O) to produce a low CO2 synthesis gas that includes hydrogen and carbon monoxide gas, or 2) reform natural gas in a non-catalytic reformation reaction, using thermal energy from the radiant heat.