摘要:
Provided are a dynamic resource allocation method and apparatus in an Orthogonal Frequency Division Multiple Access (OFDMA)-based cognitive radio system and a downlink frame structure of the method and apparatus. The method includes a base station (BS) selecting one of an Adaptive Modulation and Coding (AMC) subchannel allocation scheme, in which a subchannel comprising at least one bin comprising a first plurality of continuous subcarriers in a frequency domain, is allocated, and a diversity subchannel allocation scheme, in which a subchannel comprising a second plurality of scattered subcarriers in the frequency domain is allocated, according to a level of frequency selectivity of an unused idle frequency band; and the BS allocating at least one subchannel to a terminal according to the selected subchannel allocation scheme. Accordingly, downlink throughput in the cognitive radio system can be increased.
摘要:
The present invention relates to relay customer premises equipment (RCPE) for exchanging operational information and coexistence information of each cell between adjacent cells in a cellular system. The present invention enables effective control between multiple cells by directly transmitting operational information and coexistence information between cells over air links.
摘要:
Provided is a large range management device (LRMD) of managing a communication between a plurality of small range devices (SRDs) and a plurality of large range devices (LRDs), the SRDs and the LRDs being located in a single cell and having different transmission coverage, the LRMD including an access slot allocation unit to allocate an SRD access slot to a radio resource for a downlink, to enable a first SRD to request an association from a network, a selection unit to select a communication relay device for relaying relay data of the first SRD, a relay slot allocation unit to allocate at least one SRD relay slot to a radio resource for an uplink, to enable the communication relay device to relay the relay data to a second SRD or another LRD, and a receiving unit to receive the relay data based on the at least one SRD relay slot
摘要:
Provided are a channel switching method for effectively performing channel switching in a cognitive radio system while protecting an incumbent user, a method of managing a frequency channel, and a base station and customer premises equipment (CPE) using the methods. In the channel switching method performed by the base station, a currently unavailable first frequency channel is detected from among at least one uplink/downlink frequency channel which is set as a communication channel with the CPE; a channel switching request message requesting switching from the first frequency channel to a second frequency channel is transmitted to the CPE; and the first frequency channel is switched to the second frequency channel when a channel switching report message reporting that channel switching is to be performed in response to the channel switching request message is received from the CPE.
摘要:
Provided are a method for using a flexible bandwidth in an orthogonal frequency division multiple access (OFDMA)-based cognitive radio system, and a base station (BS) and a subscriber station using the method. The method includes: allocating a channel band from among unused channel bands having a bandwidth that is a natural number times a bandwidth resolution to customer premises equipment (CPE), wherein the bandwidth resolution is a predetermined bandwidth smaller than a bandwidth of a broadcast channel band, and transmitting an OFDMA-based signal comprising band allocation information indicating information regarding the allocated channel band.
摘要:
Provided is a contention-based data communication apparatus and method that may notify that a radio resource is to be used using a search signal prior to transmitting a communication frame, and may transmit data based on a priority when a search signal received from another communication apparatus is detected.
摘要:
Provided is a large range management device (LRMD) of managing a communication between a plurality of small range devices (SRDs) and a plurality of large range devices (LRDs), the SRDs and the LRDs being located in a single cell and having different transmission coverage, the LRMD including an access slot allocation unit to allocate an SRD access slot to a radio resource for a downlink, to enable a first SRD to request an association from a network, a selection unit to select a communication relay device for relaying relay data of the first SRD, a relay slot allocation unit to allocate at least one SRD relay slot to a radio resource for an uplink, to enable the communication relay device to relay the relay data to a second SRD or another LRD, and a receiving unit to receive the relay data based on the at least one SRD relay slot.
摘要:
Provided are a method for using a flexible bandwidth in an orthogonal frequency division multiple access (OFDMA)-based cognitive radio system, and a base station (BS) and a subscriber station using the method. The method includes: allocating a channel band from among unused channel bands having a bandwidth that is a natural number times a bandwidth resolution to customer premises equipment (CPE), wherein the bandwidth resolution is a predetermined bandwidth smaller than a bandwidth of a broadcast channel band, and transmitting an OFDMA-based signal comprising band allocation information indicating information regarding the allocated channel band.
摘要:
A method and apparatus for detecting a signal using a cyclo-stationary characteristic value is provided. A method of detecting a signal using a cyclo-stationary characteristic value includes: calculating cyclo-stationary characteristic values with respect to a cyclic frequency domain of an input signal; multiplying the calculated cyclo-stationary characteristic values with each other; and detecting the signal from the input signal based on the result of the multiplication.
摘要:
A method and apparatus for detecting a signal using a cyclo-stationary characteristic value is provided. A method of detecting a signal using a cyclo-stationary characteristic value includes: calculating cyclo-stationary characteristic values with respect to a cyclic frequency domain of an input signal; multiplying the calculated cyclo-stationary characteristic values with each other; and detecting the signal from the input signal based on the result of the multiplication.