摘要:
A flash memory device including a lower tunnel insulation layer on a substrate, an upper tunnel insulation layer on the lower tunnel insulation layer, and a P-type gate on the upper tunnel insulation layer, wherein the upper tunnel insulation layer includes an amorphous oxide layer.
摘要:
A flash memory device including a lower tunnel insulation layer on a substrate, an upper tunnel insulation layer on the lower tunnel insulation layer, and a P-type gate on the upper tunnel insulation layer, wherein the upper tunnel insulation layer includes an amorphous oxide layer.
摘要:
A flash memory device may include a lower tunnel insulation layer disposed on a substrate, an upper tunnel insulation layer disposed on the lower tunnel insulation layer, a floating gate disposed on the upper tunnel insulation layer, an intergate insulation layer disposed on the floating gate; and a control gate disposed on the intergate insulation layer.
摘要:
A flash memory device may include a lower tunnel insulation layer disposed on a substrate, an upper tunnel insulation layer disposed on the lower tunnel insulation layer, a floating gate disposed on the upper tunnel insulation layer, an intergate insulation layer disposed on the floating gate; and a control gate disposed on the intergate insulation layer.
摘要:
Fabrication of a nonvolatile memory device includes sequentially forming a tunnel oxide layer, a first conductive layer, and a nitride layer on a semiconductor substrate. A stacked pattern is formed from the tunnel oxide layer, the first conductive layer, and the nitride layer and a trench is formed in the semiconductor substrate adjacent to the stacked pattern. An oxidation process is performed to form a sidewall oxide layer on a sidewall of the trench and the first conductive layer. Chlorine is introduced into at least a portion of the stacked pattern subjected to the oxidation process. Introducing Cl into the stacked pattern may at least partially cure defects that are caused therein during fabrication of the structure.
摘要:
Fabrication of a nonvolatile memory device includes sequentially forming a tunnel oxide layer, a first conductive layer, and a nitride layer on a semiconductor substrate. A stacked pattern is formed from the tunnel oxide layer, the first conductive layer, and the nitride layer and a trench is formed in the semiconductor substrate adjacent to the stacked pattern. An oxidation process is performed to form a sidewall oxide layer on a sidewall of the trench and the first conductive layer. Chlorine is introduced into at least a portion of the stacked pattern subjected to the oxidation process. Introducing Cl into the stacked pattern may at least partially cure defects that are caused therein during fabrication of the structure.
摘要:
A method of forming a mask stack pattern and a method of manufacturing a flash memory device including an active area having rounded corners are provided. The method of manufacture including forming a mask stack pattern defining an active region, the mask stack pattern having a pad oxide layer formed on a semiconductor substrate, a silicon nitride layer formed on the pad oxide layer and a stack oxide layer formed on the silicon nitride layer, oxidizing a surface of the semiconductor substrate exposed by the mask stack pattern and lateral surfaces of the silicon nitride layer such that corners of the active region are rounded, etching the semiconductor substrate having an oxidized surface to form a trench in the semiconductor substrate, forming a device isolation oxide layer in the trench, removing the silicon nitride layer from the semiconductor substrate, and forming a gate electrode in a portion where the silicon nitride layer is removed.
摘要:
Provided is a tunneling insulating layer, a flash memory device including the same that increases a program/erase operation speed of the flash memory device and has improved data retention in order to increase reliability of the flash memory device, a memory card and system including the flash memory device, and methods of manufacturing the same. A tunneling insulating layer may include a first region and a second region on the first region, wherein the first region has a first nitrogen atomic percent, the second region has a second nitrogen atomic percent, and the second nitrogen atomic percent is less than the first nitrogen atomic percent. The flash memory device according to example embodiments may include a substrate including source and drain regions and a channel region between the source and drain regions, the tunneling insulating layer on the channel region, a charge storage layer on the tunneling insulating layer, a blocking insulation layer on the charge storage layer, and a gate electrode on the blocking insulation layer.
摘要:
A semiconductor device includes a semiconductor substrate having a surface, buried isolation regions protruding from the surface of the semiconductor substrate, and a first insulating layer on the surface of the semiconductor substrate between the isolation regions and including a fluorine, nitrogen, and/or heavy hydrogen impurity. A floating electrode is on the first insulating layer, a second insulating layer is on the floating electrode and the isolation regions, and a control gate electrode is on the second insulating layer. Related methods of forming semiconductor devices are also disclosed.
摘要:
A semiconductor device includes a semiconductor substrate having a surface, buried isolation regions protruding from the surface of the semiconductor substrate, and a first insulating layer on the surface of the semiconductor substrate between the isolation regions and including a fluorine, nitrogen, and/or heavy hydrogen impurity. A floating electrode is on the first insulating layer, a second insulating layer is on the floating electrode and the isolation regions, and a control gate electrode is on the second insulating layer. Related methods of forming semiconductor devices are also disclosed.