Abstract:
An adjustable shunt regulator circuit has two current paths in parallel, with each current path having a bipolar transistor therein with the bases of the bipolar transistors of the two current paths connected in common. One of the current paths has a high impedance node. A MOS transistor has a gate connected to the high impedance node, and a source and a drain. A resistor divide circuit is connected in parallel to the source and drain of the MOS transistor and provides the output of the regulator circuit. The resistor divide circuit has a first resistor connected in series with a second resistor at a first node. A feedback connects the first node to the bases of the bipolar transistors connected in common of the two current paths.
Abstract:
This document describes a new op-amp sharing technique for pipeline ADC without memory effect. The key features of this technique are: the usage of negative impedance converter and scaled replica of the op-amp input device to achieve zero error voltage, which in turns achieve low power dissipation due to the removal of the tradeoff between op-amp sharing and memory effect. With this technique much lower operation of pipeline ADC can be achieved for applications of data communications and image signal processing.
Abstract:
An adjustable shunt regulator circuit has two current paths in parallel, with each current path having a bipolar transistor therein with the bases of the bipolar transistors of the two current paths connected in common. One of the current paths has a high impedance node. A MOS transistor has a gate connected to the high impedance node, and a source and a drain. A resistor divide circuit is connected in parallel to the source and drain of the MOS transistor and provides the output of the regulator circuit. The resistor divide circuit has a first resistor connected in series with a second resistor at a first node. A feedback connects the first node to the bases of the bipolar transistors connected in common of the two current paths.
Abstract:
This document describes a new op-amp sharing technique for pipeline ADC without memory effect. The key features of this technique are: the usage of negative impedance converter and scaled replica of the op-amp input device to achieve zero error voltage, which in turns achieve low power dissipation due to the removal of the tradeoff between op-amp sharing and memory effect. With this technique much lower operation of pipeline ADC can be achieved for applications of data communications and image signal processing.