摘要:
Inkwells adapted for use in direct-write nanolithography and other applications including use of wells, channels, and posts. The wells can possess a geometry which matches the geometry of tips which are dipped into the inkwells. The channels can be open or closed. Hydrophilicity and hydrophobicity can be used to control ink flow. SEM can be used to characterize the inkwells. Ink flow can be monitored with video. Hydrophobic material layers can be used to prevent cross contamination. Microsyringes can be used to fill reservoirs. Satellite reservoirs can be used to prevent bubble formation.
摘要:
Inkwells adapted for use in direct-write nanolithography and other applications including use of wells, channels, and posts. The wells can possess a geometry which matches the geometry of tips which are dipped into the inkwells. The channels can be open or closed. Hydrophilicity and hydrophobicity can be used to control ink flow. SEM can be used to characterize the inkwells. Ink flow can be monitored with video. Hydrophobic material layers can be used to prevent cross contamination. Microsyringes can be used to fill reservoirs. Satellite reservoirs can be used to prevent bubble formation.
摘要:
Inkwells adapted for use in direct-write nanolithography and other applications including use of wells, channels, and posts. The wells can possess a geometry which matches the geometry of tips which are dipped into the inkwells. The channels can be open or closed. Hydrophilicity and hydrophobicity can be used to control ink flow. SEM can be used to characterize the inkwells. Ink flow can be monitored with video. Hydrophobic material layers can be used to prevent cross contamination. Microsyringes can be used to fill reservoirs. Satellite reservoirs can be used to prevent bubble formation.
摘要:
Inkwells adapted for use in direct-write nanolithography and other applications including use of wells, channels, and posts. The wells can possess a geometry which matches the geometry of tips which are dipped into the inkwells. The channels can be open or closed. Hydrophilicity and hydrophobicity can be used to control ink flow. SEM can be used to characterize the inkwells. Ink flow can be monitored with video. Hydrophobic material layers can be used to prevent cross contamination. Microsyringes can be used to fill reservoirs. Satellite reservoirs can be used to prevent bubble formation.
摘要:
Inkwells adapted for use in direct-write nanolithography and other applications including use of wells, channels, and posts. The wells can possess a geometry which matches the geometry of tips which are dipped into the inkwells. The channels can be open or closed. Hydrophilicity and hydrophobicity can be used to control ink flow. SEM can be used to characterize the inkwells. Ink flow can be monitored with video. Hydrophobic material layers can be used to prevent cross contamination. Microsyringes can be used to fill reservoirs. Satellite reservoirs can be used to prevent bubble formation.
摘要:
A fluid processing device is provided that includes a substrate, a plurality of fluid retainment regions formed in or on the substrate, and a barrier at least partially separating two or more of the fluid retainment regions. The barrier includes a mixture of a sequestering material and a reaction component. The reaction component can be at least one of a reactant, a reagent, a catalyst, an initiator, a promoter, a cofactor, an enzyme, a salt, or a combination thereof. The sequestering material can be a porous material, a dissolvable material, or both.
摘要:
A diagnostic device is provided that includes a plurality of retainment regions interconnected through at least one fluid processing passageway or separated by at least one barrier. A fluid flow modulator can be provided in the fluid processing passageway if a fluid processing passageway is provided. The barrier and/or fluid flow modulator can comprise a polysaccharide, a derivative of a polysaccharide, or a combination thereof. For example, the barrier can comprise a chitosan material.
摘要:
A diagnostic device is provided that includes a plurality of retainment regions, with the retainment regions that are separated by at least one dissolvable barrier. The retainment regions can be interconnected through at least one fluid processing passageway. A retainment region can include a container such as a retainment region, well, chamber, or other receptacle, or a retainment region such as a surface on which the material is retained. The retainment regions can include a reaction retainment region, one or more reagent retainment regions, each containing unreacted reagents, and a sample retainment region. A pressure-actuated valve can be positioned in each fluid processing passageway interconnecting the one or more reagent retainment regions with the respective intermediate retainment regions interposed between each of the one or more reagent retainment regions and the reaction retainment region. The dissolvable barrier can be a fluid flow modulator in the at least one fluid processing passageway.
摘要:
A diagnostic device is provided that includes a plurality of retainment regions, with the retainment regions that are separated by at least one dissolvable barrier. The retainment regions can be interconnected through at least one fluid processing passageway. A retainment region can include a container such as a retainment region, well, chamber, or other receptacle, or a retainment region such as a surface on which the material is retained. The retainment regions can include a reaction retainment region, one or more reagent retainment regions, each containing unreacted reagents, and a sample retainment region. A pressure-actuated valve can be positioned in each fluid processing passageway interconnecting the one or more reagent retainment regions with the respective intermediate retainment regions interposed between each of the one or more reagent retainment regions and the reaction retainment region. The dissolvable barrier can be a fluid flow modulator in the at least one fluid processing passageway.
摘要:
A diagnostic device is provided that includes a plurality of retainment regions interconnected through at least one fluid processing passageway or separated by at least one barrier. A fluid flow modulator can be provided in the fluid processing passageway if a fluid processing passageway is provided. The barrier and/or fluid flow modulator can comprise a polysaccharide, a derivative of a polysaccharide, or a combination thereof. For example, the barrier can comprise a chitosan material.