摘要:
Messages on controller area network (CAN) buses are communicated over subsea links. Messages are sent as electrical or optical signals. The present invention provides a subsea CAN BUS electronic distribution unit (EDU) for transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network. The CAN BUS EDU of the present invention is contained within a single housing and combines the functions of transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network that would typically be handled by multiple devices.
摘要:
Messages on controller area network (CAN) buses are communicated over subsea links to subsea devices that also require electrical power to function. These subsea devices may be disposed kilometers away from the signal source where electrical signal and power transmission is impractical. The present invention provides a subsea power-over-fiber CAN bus converter for converting CAN bus electrical input and electrical power input into optical signals for transmission over a fiber optic cable for conversion into CAN bus electrical output and electrical power output for use by a subsea sensor or other subsea device. The subsea power-over-fiber CAN bus converter of the present invention is may comprise a flying lead harness that has a first connector end, a second connector end, a first optical converter module, a second optical converter module, and a fiber optic cable disposed between the first and second optical converter modules.
摘要:
The present invention provides systems, methods, and apparatuses for subsea optical to electrical distribution. The present invention comprises one or more routing units adapted to convert optical signals to electrical signals and route the converted electrical signals to an appropriate end device. The routing unit is a compact device that may be installed without the use of heavy equipment.
摘要:
Messages on controller area network (CAN) buses are communicated over subsea links to subsea devices that also require electrical power to function. These subsea devices may be disposed kilometers away from the signal source where electrical signal and power transmission is impractical. The present invention provides a subsea power-over-fiber CAN bus converter for converting CAN bus electrical input and electrical power input into optical signals for transmission over a fiber optic cable for conversion into CAN bus electrical output and electrical power output for use by a subsea sensor or other subsea device. The subsea power-over-fiber CAN bus converter of the present invention is may comprise a flying lead harness that has a first connector end, a second connector end, a first optical converter module, a second optical converter module, and a fiber optic cable disposed between the first and second optical converter modules.
摘要:
One or more insulated conductive wire assemblies are incorporated in a pressure balanced, oil-filled (PBOF) hose. Each conductive wire assembly has a pair of conductive wires each having an insulation layer, an insulating material surrounding the insulated wires, and an outer insulating layer surrounding the insulating material. The insulating material may be selected to have a dielectric constant substantially matching the dielectric constant of the oil in the PBOF hose, so that the insulated pair of conductors perform in the same way both before and after the assembly is submerged in oil in the jumper hose. One or more parameters of the conductive wire assembly are selected such that the assembly has a predetermined impedance when submerged in oil within the PBOF hose.
摘要:
Messages on controller area network (CAN) buses are communicated over subsea links. Messages are sent as electrical or optical signals. The present invention provides a subsea CAN BUS electronic distribution unit (EDU) for transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network. The CAN BUS EDU of the present invention is contained within a single housing and combines the functions of transmitting, receiving, converting, and routing electrical or optical signals sent over a subsea CAN BUS network that would typically be handled by multiple devices.
摘要:
The present invention provides systems, methods, and apparatuses for subsea optical to electrical distribution. The present invention comprises one or more routing units adapted to convert optical signals to electrical signals and route the converted electrical signals to an appropriate end device. The routing unit is a compact device that may be installed without the use of heavy equipment.
摘要:
A subsea data collection and communication system is installed at a subsea interconnect point or subsea connector used for communication between subsea electrical, optical or hybrid electro-optical cables. The data collection and communication system is configured to collect system performance data such as voltage, current, optical pressure and the like from signals carried by the wires or fibers in cables connected to the connector unit, and may also collect data on environmental conditions from sensors installed in or on the connector unit, such as temperature, pressure, or sea water salinity sensors, and the like. The collected data is transmitted to a remote monitoring station or local hub for further processing to detect potential faults or performance degradation either at periodic intervals or on demand, using bi-directional Ethernet, CANBUS, a carrier frequency system over the cable power lines, optical signal over optical fiber, or wireless communication links over short distances.
摘要:
A subsea data collection and communication system is installed at a subsea interconnect point or subsea connector used for communication between subsea electrical, optical or hybrid electro-optical cables. The data collection and communication system is configured to collect system performance data such as voltage, current, optical pressure and the like from signals carried by the wires or fibers in cables connected to the connector unit, and may also collect data on environmental conditions from sensors installed in or on the connector unit, such as temperature, pressure, or sea water salinity sensors, and the like. The collected data is transmitted to a remote monitoring station or local hub for further processing to detect potential faults or performance degradation either at periodic intervals or on demand, using bi-directional Ethernet, CANBUS, a carrier frequency system over the cable power lines, optical signal over optical fiber, or wireless communication links over short distances.
摘要:
One or more insulated conductive wire assemblies are incorporated in a pressure balanced, oil-filled (PBOF) hose. Each conductive wire assembly has a pair of conductive wires each having an insulation layer, an insulating material surrounding the insulated wires, and an outer insulating layer surrounding the insulating material. The insulating material may be selected to have a dielectric constant substantially matching the dielectric constant of the oil in the PBOF hose, so that the insulated pair of conductors perform in the same way both before and after the assembly is submerged in oil in the jumper hose. One or more parameters of the conductive wire assembly are selected such that the assembly has a predetermined impedance when submerged in oil within the PBOF hose.