Abstract:
A microelectronic device has a common terminal transistor with two or more channels, and sense transistors in corresponding areas of the channels. The channels and the sense transistors share a common node in a semiconductor substrate. The sense transistors are configured to provide sense currents that are representative of currents through the corresponding channels. The sense transistors are located so that a ratio of the channel currents to the corresponding sense currents have less than a target value of cross-talk. The microelectronic device may be implemented without a compensation circuit which provides a compensation signal used to adjust one or more of the sense currents to reduce cross-talk. A method of forming the microelectronic device, including estimating a potential distribution in the semiconductor substrate containing the common node of the common terminal transistor, and selecting locations for the sense transistors based on the estimated potential distribution, is disclosed.
Abstract:
A circuit reliability system with a first voltage supply for outputting a first voltage and a second voltage supply for outputting a second voltage. The system also includes: (i) at least one node for providing a potential in response to the first voltage and the second voltage; (ii) monitoring circuitry for detecting the first voltage exceeding a threshold; and (iii) disabling circuitry, for disabling the second voltage supply in response to the monitoring circuitry detecting the first voltage exceeding a threshold.
Abstract:
An apparatus, comprising: a charge-pump; a sampler that samples an optical signal, including: a black sampler; a video sampler; and an analog to digital converter. The first aspect further provides a single clock that is coupled to and provides clocking signals to: a) the charge-pump logic that is coupled to the charge-pump; and b) the sampler logic that is coupled to the sampler that samples the optical signal, wherein if the clock for the charge pump is running faster than an analog front end (“AFE”) video sampling clock, a state-machine control is configured to: skip the charge pump clock period right before a video sample signal falling edge, thereby recovering to a normal operation the next charge-pump clock period, wherein this duty cycle modulation of charge pump clock will not substantially impact charge pump output.
Abstract:
A microelectronic device has a common terminal transistor with two or more channels, and sense transistors in corresponding areas of the channels. The channels and the sense transistors share a common node in a semiconductor substrate. The sense transistors are configured to provide sense currents that are representative of currents through the corresponding channels. The sense transistors are located so that a ratio of the channel currents to the corresponding sense currents have less than a target value of cross-talk. The microelectronic device may be implemented without a compensation circuit which provides a compensation signal used to adjust one or more of the sense currents to reduce cross-talk. A method of forming the microelectronic device, including estimating a potential distribution in the semiconductor substrate containing the common node of the common terminal transistor, and selecting locations for the sense transistors based on the estimated potential distribution, is disclosed.
Abstract:
A circuit protective system. The system includes an output controlling enablement of a transistor and an input sensing an operational parameter associated with the transistor. The system also includes detection circuitry providing an event fault indicator if the operational parameter violates a condition. The system also includes protective circuitry disabling the transistor in response to the event fault indicator and subsequently selectively applying an enabling bias to the transistor; the enabling bias is selected from at least two different bias levels and in response to a number of event fault indications from the detection circuitry.
Abstract:
A circuit protective system. The system has: (i) an input for sensing an operational voltage responsive to a current flowing through a transistor; (ii) circuitry for applying a forced voltage at the input; (iii) voltage-to-current conversion circuitry for outputting a reference current in response to the forced voltage at the input; (iv) circuitry for providing a reference trim current in response to a trim indicator; and (v) comparison circuitry for outputting a limit signal in response to a comparison of the reference current and the reference trim current.
Abstract:
A bidirectional level shifter circuit includes first and second driver circuits, first and second comparators, and a control circuit. The first driver circuit includes a first driver output and a first enable input. The second driver circuit includes a second driver output and a second enable input. The first comparator includes a first comparator output, a first reference input, and a first comparator input that is coupled to the second driver output. The second comparator includes a second comparator output, a second reference input, and a second comparator input is coupled to the first driver output. The control circuit includes a first control input coupled to the first comparator output, a second control input coupled to the second comparator output, a first control output coupled to the first enable input, and a second control output coupled to the second enable input.
Abstract:
A circuit protective system. The system includes an output controlling enablement of a transistor and an input sensing an operational parameter associated with the transistor. The system also includes detection circuitry providing an event fault indicator if the operational parameter violates a condition. The system also includes protective circuitry disabling the transistor in response to the event fault indicator and subsequently selectively applying an enabling bias to the transistor; the enabling bias is selected from at least two different bias levels and in response to a number of event fault indications from the detection circuitry.
Abstract:
A microelectronic device has a common terminal transistor with two or more channels, and sense transistors in corresponding areas of the channels. The channels and the sense transistors share a common node in a semiconductor substrate. The sense transistors are configured to provide sense currents that are representative of currents through the corresponding channels. The sense transistors are located so that a ratio of the channel currents to the corresponding sense currents have less than a target value of cross-talk. The microelectronic device may be implemented without a compensation circuit which provides a compensation signal used to adjust one or more of the sense currents to reduce cross-talk. A method of forming the microelectronic device, including estimating a potential distribution in the semiconductor substrate containing the common node of the common terminal transistor, and selecting locations for the sense transistors based on the estimated potential distribution, is disclosed.
Abstract:
A circuit protective system with an input for sensing a reference current and an input for sensing a reference voltage. The system also has circuitry for determining an estimated energy in response to the reference current and the reference voltage and circuitry for generating a control signal responsive to the estimated energy exceeding a threshold.