Abstract:
A resonant line driver for driving capacitive-loads includes a driver series-coupled to an energy transfer inductor L1, driving signal energy at a signal frequency through L1. A switch array is controlled to switch L1 between multiple electrodes according to a switching sequence, each electrode characterized by a load capacitance CL. L1 and CL form a resonator circuit in which signal energy cycles between L1 and CL at the signal frequency. The switch array switches L1 between a current electrode and a next electrode at a zero_crossing when signal energy in the energy transfer inductor is at a maximum and signal energy in the load capacitance of the current electrode is at a minimum. An amplitude control loop controls signal energy delivered to the L1CL resonator circuit, and a frequency control loop controls signal frequency/phase. In an example application, the resonant driver provides line drive for a mutual capacitance touch screen.
Abstract:
A resonant line driver for driving capacitive-loads includes a driver series-coupled to an energy transfer inductor L1, driving signal energy at a signal frequency through L1. A switch array is controlled to switch L1 between multiple electrodes according to a switching sequence, each electrode characterized by a load capacitance CL. L1 and CL form a resonator circuit in which signal energy cycles between L1 and CL at the signal frequency. The switch array switches L1 between a current electrode and a next electrode at a zero_crossing when signal energy in the energy transfer inductor is at a maximum and signal energy in the load capacitance of the current electrode is at a minimum. An amplitude control loop controls signal energy delivered to the L1CL resonator circuit, and a frequency control loop controls signal frequency/phase. In an example application, the resonant driver provides line drive for a mutual capacitance touch screen.
Abstract:
A method of fabricating a MEMS device is disclosed. A metal layer is provided over a first surface of a substrate including over an opening. The metal layer is patterned to define a membrane segment and a pad, with the membrane segment extending at least partially across the opening. An integrated circuit chip is attached over the opening to the membrane segment and pad, with the integrated circuit separated from an extending portion of the membrane segment by a gap. The integrated circuit chip includes a conductive member so that deflection of the extending portion relative to the conductive member can be measured as a change in capacitance.
Abstract:
A semiconductor-centered MEMS device (100) integrates the movable microelectromechanical parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, and leaving only the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package is substrate-based and has an opening through the thickness of the substrate. Substrate materials include polymer tapes with attached metal foil, and polymer-based and ceramic-based multi-metal-layer dielectric composites with attached metal foil. The movable part is formed from the metal foil attached to a substrate surface and extends at least partially across the opening. The chip is flip-assembled to span at least partially across the membrane, and is separated from the membrane by a gap.
Abstract:
Display systems and methods for mobile devices and mobile devices are disclosed. In one embodiment, a display system for a mobile device is provided. The mobile device is handheld and includes a primary display screen. The display system includes an auxiliary screen and a connecting device coupled to the auxiliary screen and attachable to the mobile device. An image from the mobile device is producible on the auxiliary screen. The display system is removable from the mobile device.
Abstract:
An inductive current digital-to-analog converter (DAC) includes: a power supply input adapted to be coupled to a power supply; a load terminal adapted to be coupled to a load; an inductor between the power supply input and the load terminal; and inductor current control circuitry. The inductor current control circuitry has: a sense signal input configured to receive a sense signal representative of the inductor current; a control code input configured to receive a control code; a set of switches having respective control terminals; and a set of control circuit outputs coupled to the respective control terminals of the set of switches. The inductor current control circuitry is configured to adjust control signals provided to the set of control circuit outputs based on the sense signal and the control code.
Abstract:
A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices.
Abstract:
A touch screen system includes a capacitive touch screen (1) including a plurality of row conductors (7-1, 2 . . . n) and a column conductor (5-1). A plurality of cotemporaneous orthogonal excitation signals (S1(t), S2 (t) . . . Sn(t)) are simultaneously driven onto the row conductors, respectively. The capacitively coupled signals on the column conductor may be influenced by a touch (10) on the capacitive touch screen. Receiver circuitry (50) includes a sense amplifier (21-1) coupled to generate an amplifier output signal (r1(t)) in response to signals capacitively coupled onto the column conductor. WHT-based circuitry (35) determines amounts of signal contribution capacitively coupled by each of the excitation signals, respectively, to the amplifier output signal.
Abstract:
Display systems and methods for mobile devices and mobile devices are disclosed. In one embodiment, a display system for a mobile device is provided. The mobile device is handheld and includes a primary display screen. The display system includes an auxiliary screen and a connecting device coupled to the auxiliary screen and attachable to the mobile device. An image from the mobile device is producible on the auxiliary screen. The display system is removable from the mobile device.
Abstract:
A MEMS may integrate movable MEMS parts, such as mechanical elements, flexible membranes, and sensors, with the low-cost device package, leaving the electronics and signal-processing parts in the integrated circuitry of the semiconductor chip. The package may be a leadframe-based plastic molded body having an opening through the thickness of the body. The movable part may be anchored in the body and extend at least partially across the opening. The chip may be flip-assembled to the leads to span across the foil, and may be separated from the foil by a gap. The leadframe may be a prefabricated piece part, or may be fabricated in a process flow with metal deposition on a sacrificial carrier and patterning of the metal layer. The resulting leadframe may be flat or may have an offset structure useful for stacked package-on-package devices.