Abstract:
A method for treating regurgitation of blood flow through a diseased heart valve is provided. The diseased heart valve including an annulus, an anterior valve leaflet, a posterior valve leaflet and a subvalvular apparatus. The method includes providing an apparatus comprising a substantially annular support member, at least one infra-annular support member securely connected thereto, and at least one anchoring element associated with the at least one infra-annular support member. The method further includes attaching the substantially annular support member to the annulus of the diseased heart valve and attaching proximal and distal ends of a prosthetic chordae tendineae to the at least one anchoring element and a papillary muscle, respectively, so that the papillary muscle is caused to move medially.
Abstract:
Various embodiments of a wound cover apparatus are provided. In one embodiment a wound cover apparatus includes a treatment enclosure and a vacuum seal that is external to the treatment enclosure. The vacuum seal includes a vacuum passageway and a vacuum port in fluid communication with one another. In another embodiment the apparatus further includes a treatment port in fluid communication with the treatment enclosure. The wound cover apparatus adheres to the patient by application of vacuum applied to the treatment enclosure and the vacuum seal which extends from the housing. The negative pressure applied to the wound cover apparatus creates negative stress along periwound which promotes perfusion and vascularization and induces mechanical deformation to accelerate healing.
Abstract:
An apparatus for partially supporting a leaflet of a regurgitant heart valve comprises at least one subvalvular device including a subvalvular supporting portion including a leaflet-contacting upper supporter surface longitudinally spaced from an oppositely facing lower supporter surface. A supporter perimeter wall extends longitudinally between the upper and lower supporter surfaces, with at least a portion contacting a subvalvular cardiac wall adjacent to the heart valve. An anchor portion is adjacent to, and longitudinally spaced from, the upper supporter surface. The anchor portion includes a leaflet-contacting lower anchor surface longitudinally spaced from an oppositely facing upper anchor surface. A connector neck is interposed longitudinally between, and is directly attached to both of, the upper supporter surface and the lower anchor surface. The connector neck penetrates longitudinally through at least one of a base of the leaflet and an annulus of the heart valve at a manufactured puncture site.
Abstract:
A method for treating regurgitation of blood flow through a diseased heart valve is provided. The diseased heart valve including an annulus, an anterior valve leaflet, a posterior valve leaflet and a subvalvular apparatus. The method includes providing an apparatus comprising a substantially annular support member, at least one infra-annular support member securely connected thereto, and at least one anchoring element associated with the at least one infra-annular support member. The method further includes attaching the substantially annular support member to the annulus of the diseased heart valve and attaching proximal and distal ends of a prosthetic chordae tendineae to the at least one anchoring element and a papillary muscle, respectively, so that the papillary muscle is caused to move medially.
Abstract:
In one aspect of the present disclosure, a device for treating a regurgitant heart valve in a subject can include a flexible, elongated body having a central chordae support portion disposed between first and second arms. The first and second arms can include first and second lumens, respectively, extending longitudinally therethrough. A method of treating a regurgitant heart valve in a subject is also provided.
Abstract:
An annuloplasty ring for repairing a cardiac valve includes an expandable support member having oppositely disposed proximal and distal end portions and a main body portion between the end portions. The proximal end portion of the support member includes a plurality of wing members that extend from the main body portion. Each of the wing members includes at least one hook member for embedding into a cardiac wall and the valve annulus to secure the annuloplasty ring in the valve annulus. The annuloplasty ring may be expanded into full contact engagement with the annulus of the cardiac valve by an inflatable balloon. Methods for repairing a cardiac valve using the annuloplasty ring are also provided.
Abstract:
An apparatus for replacing a diseased cardiac valve is movable from a radially collapsed configuration to a radially expanded configuration. The apparatus comprises an expandable support member and a prosthetic valve secured therein. The main body portion extends between first and second end portions and includes an outer circumferential surface, a circumferential axis extending about the circumferential surface, and a plurality of wing members spaced apart from one another by an expandable region. Each of the wing members includes first and second end portions and a flexible middle portion extending between the end portions. The second end portion is integrally formed with the uyimain body portion. The first end portion is adjacent the circumferential axis and substantially flush with the outer circumferential surface in the radially collapsed configuration. The first end portion extends substantially radial to the outer circumferential surface in the radially expanded configuration.
Abstract:
A cannula, system, and method for de-airing a patient's heart following surgery are described. The cannula includes a tubular wall having a distal end portion and a proximal end portion. The wall also has a length extending from the distal end portion to the proximal end portion. The wall at least partially defines a first lumen extending lengthwise of the wall into the distal end portion and terminating in a closed first end. The wall also at least partially defines a second lumen extending lengthwise of the wall and terminating in a closed second end. The wall is configured and dimensioned such that the cannula can be inserted into the patient's heart. A first aperture extends through the wall from the first lumen to an exterior surface of the wall. A second aperture extends through the wall from the second lumen to the exterior surface of the wall.
Abstract:
A method for replacing a cardiac valve includes an expandable support member having oppositely disposed first and second ends, a main body portion extending between the ends, and a prosthetic valve within the main body portion. The main body portion has an annular shape for expanding into position in the annulus of the valve. The first and second ends include a plurality of upper and lower wing members movable from a collapsed condition into an extended condition for respectively engaging a first section of cardiac tissue surrounding the valve and for: engaging a portion of the native valve leaflets to pin the leaflets back against the annulus. The second end further includes at least two strut members spaced apart from each other. A respective one of the strut members is attached to at least one commissural section of the prosthetic valve to prevent prolapse of the valve leaflets.
Abstract:
An apparatus for replacing a diseased cardiac valve is movable from a radially collapsed configuration to a radially expanded configuration. The apparatus comprises an expandable support member and a prosthetic valve secured therein. The main body portion extends between first and second end portions and includes an outer circumferential surface, a circumferential axis extending about the circumferential surface, and a plurality of wing members spaced apart from one another by an expandable region. Each of the wing members includes first and second end portions and a flexible middle portion extending between the end portions. The second end portion is integrally formed with the uyimain body portion. The first end portion is adjacent the circumferential axis and substantially flush with the outer circumferential surface in the radially collapsed configuration. The first end portion extends substantially radial to the outer circumferential surface in the radially expanded configuration.