摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling. The method and device provide for cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation and cooling of the anatomical feature and/or systemic cooling, as intended. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The present invention provides for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of mucus to the dry fluid yields evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. Therefore, therapeutic hypothermia may be achieved for neuroprotection of various organs after ischemic insult, like the brain after cardiac arrest. Similarly, excess fluid removal is achievable for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The method and device provide for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest. Similarly, excess fluid removal may be achieved for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The method and device provide for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest. Similarly, excess fluid removal may be achieved for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The method and device provide for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest Similarly, excess fluid removal may be achieved for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling. The method and device provide for cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation and cooling of the anatomical feature and/or systemic cooling, as intended. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The method and device provide for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest. Similarly, excess fluid removal may be achieved for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The method and device provide for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of such mucus to the dry fluid results in evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. In this fashion, therapeutic hypothermia may be achieved to provide for neuroprotection of various organs after ischemic insult, such the brain after cardiac arrest. Similarly, excess fluid removal may be achieved for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.
摘要:
The present invention provides a method and device for non-invasive anatomical and systemic cooling, fluid removal and/or energy removal. The present invention provides for removal of fluid and cooling of various bodily fluid-containing spaces or surfaces, such as mucus-containing spaces or surfaces via delivery of a dry fluid not including a coolant into or upon the mucus-containing space or surface. Exposure of mucus to the dry fluid yields evaporation of body fluid, removal of energy, cooling of the anatomical feature, and systemic cooling. Therefore, therapeutic hypothermia may be achieved for neuroprotection of various organs after ischemic insult, like the brain after cardiac arrest. Similarly, excess fluid removal is achievable for treatment of cardiogenic shock or other conditions that cause significant fluid build-up, especially in cases of compromised renal function. Additionally, the invention may be used to reduce fever, and other conditions where removal of heat, energy and/or water are beneficial.