Abstract:
Methods and compositions to improve the performance of single-component polymer FETs is provided comprising processing a conjugated polymer in the presence of a processing additive. Also provided is a FET device fabricated with a processing additive. Such devices have increased saturation hole and/or electron mobility compared to a control FETs.
Abstract:
Embodiments of the invention include polymers comprising a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chain, as well as methods and materials for producing such polymers. Illustrative methods include regioselectively preparing a monomer that includes an enantiopure or enantioenriched chiral side group, and then reacting these monomers to produce a polymer that comprises a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chains. In illustrative embodiments of the invention, the regioregular conjugated main chain section can contain a repeat unit that includes a dithiophene and a pyridine.
Abstract:
Optoelectronic devices, such as photovoltaic devices, comprising a low band gap, solution processable diketopyrrolopyrrole or dithioketopyrrolopyrrole chromophore core or cores are disclosed. Also disclosed are methods of fabricating such optoelectronic devices.
Abstract:
Narrow bandgap n-type small molecules are attracting attention in the near-infrared organic optoelectronics field, due to their easy tunable energy band with a molecular design flexibility. However, only a few reports demonstrate narrow bandgap non-fullerene acceptors (NFAs) that perform well in organic solar cells (OSCs), and the corresponding benefits of NFA photodiodes have not been well investigated in organic photodetectors (OPDs). Here, the ultra-narrow bandgap NFAs CO1-4F, CO1-4Cl and o-IO1 were designed and synthesized for the achieved efficient near-infrared organic photodiodes such as solar cells and photodetectors. Designing an asymmetrical CO1-4F by introducing two different π-bridges including alkylthienyl and alkoxythienyl units ultimately provides an asymmetric A-D′-D-D″-A molecular configuration. This enables a delicate modulation in energy band structure as well as maintains an intense intramolecular charge transfer characteristic of the excited state.
Abstract:
A composition of matter including a donor including a dithiophene unit combined with a non-fullerene acceptor. Further disclosed is a device comprising an active region including the composition of matter. Example devices include a solar cell or a photodetector.
Abstract:
Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.
Abstract:
Narrow bandgap n-type small molecules are attracting attention in the near-infrared organic optoelectronics field, due to their easy tunable energy band with a molecular design flexibility. However, only a few reports demonstrate narrow bandgap non-fullerene acceptors (NFAs) that perform well in organic solar cells (OSCs), and the corresponding benefits of NFA photodiodes have not been well investigated in organic photodetectors (OPDs). Here, the ultra-narrow bandgap NFAs CO1-4F, CO1-4Cl and o-IO1 were designed and synthesized for the achieved efficient near-infrared organic photodiodes such as solar cells and photodetectors. Designing an asymmetrical CO1-4F by introducing two different π-bridges including alkylthienyl and alkoxythienyl units ultimately provides an asymmetric A-D′-D-D″-A molecular configuration. This enables a delicate modulation in energy band structure as well as maintains an intense intramolecular charge transfer characteristic of the excited state.
Abstract:
Small organic molecule chromophores containing a benzo[c][1,2,5]thiadiazole with an electron-withdrawing substituent W in the 5-position (5BTH), benzo[c][1,2,5]oxadiazole with an electron-withdrawing substituent W in the 5-position (5BO), 2H-benzo[d][1,2,3]triazole (5BTR) with an electron-withdrawing substituent W in the 5-position (5BTR), 5-fluorobenzo[c][1,2,5]thiadiazole (FBTH), 5-fluorobenzo[c][1,2,5]oxadiazole (FBO), or 5-fluoro-2H-benzo[d][1,2,3]triazole (FBTR) core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.
Abstract:
Embodiments of the invention include polymers comprising a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chain, as well as methods and materials for producing such polymers. Illustrative methods include regioselectively preparing a monomer that includes an enantiopure or enantioenriched chiral side group, and then reacting these monomers to produce a polymer that comprises a regioregular conjugated main chain section having an enantiopure or enantioenriched chiral side chains. In illustrative embodiments of the invention, the regioregular conjugated main chain section can contain a repeat unit that includes a dithiophene and a pyridine.
Abstract:
Improved processing methods for enhanced properties of conjugated polymer films are disclosed, as well as the enhanced conjugated polymer films produced thereby. Addition of low molecular weight alkyl-containing molecules to solutions used to form conjugated polymer films leads to improved photoconductivity and improvements in other electronic properties. The enhanced conjugated polymer films can be used in a variety of electronic devices, such as solar cells and photodiodes.