Abstract:
The present invention provides methods, compositions, systems, and kits comprising nano-satellite complexes and/or serum albumin carrier complexes, which are used for modulating antigen-specific immune response (e.g., enhancing anti-tumor immunity). In certain embodiments, the nano-satellite complexes comprise: a) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core; b) at least one satellite particle attached to, or absorbed to, the biocompatible coating; and c) an antigenic component conjugated to, or absorbed to, the at least one satellite particle component. In certain embodiments, the complexes further comprise: d) an type I interferon agonist agent. In some embodiments, the serum albumin complexes comprise: a) at least part of a serum albumin protein, b) an antigenic component conjugated to the carrier protein, and c) a type I interferon agonist agent.
Abstract:
The present invention provides methods, compositions, systems, and kits comprising core-satellite nanocomposites useful for photothermal and/or MRI applications (e.g., tumor treatment and/or imaging). In certain embodiments, the core-satellite nanocomposites comprise: i) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core, and ii) at least one satellite component attached to, or absorbed to, the biocompatible coating. In some embodiments, the nanoparticle core and satellite component are composed of near-infrared photothermal agent material and/or MRI contrast agent material. In further embodiments, the satellite component is additionally or alternatively composed of near-infrared optical dye material.
Abstract:
The present invention relates to methods, compositions, and kits for generating conjugated gold nanoparticles. In certain embodiments, the present invention provides methods of generating unsaturated conjugated gold nanoparticles by mixing naked gold nanoparticles with a first type of attachment molecules at a molar ratio such that the attachment molecules attach to the naked gold particles at a density level below the saturation level of the naked gold particles (e.g., at a saturation level of 1-99%). In some embodiments, a second type of attachment molecules (e.g., with the opposite charge as the first type of attachment molecules) are mixed with the unsaturated conjugated gold nanoparticles to generate double-conjugated gold nanoparticles (e.g., that are zwitterionic).
Abstract:
The present invention provides methods, systems, and devices for performing photothermal therapy (e.g., to treat cancer) using photothermal nanoparticles with a biocompatible coating surrounding a highly crystallized Fe3O4 core. In certain embodiments, the highly crystallized Fe3O4 core of the photothermal nanoparticles has an X-ray diffraction (XRD) pattern where the brightest diffraction ring is from the 440 plane. In some embodiments, the photothermal therapy is conducted with a device configured to emit electromagnetic radiation in the wavelengths between about 650 nm and 1000 nm, wherein the device further comprises a visible light source that allows a user to determine where the electromagnetic radiation is contacting a subject.
Abstract translation:本发明提供了使用具有围绕高度结晶的Fe 3 O 4核心的生物相容性涂层的光热纳米颗粒进行光热治疗(例如治疗癌症)的方法,系统和装置。 在某些实施方案中,光热纳米颗粒的高度结晶的Fe 3 O 4核心具有X射线衍射(XRD)图案,其中最亮的衍射环来自440平面。 在一些实施例中,光热疗法是用配置成发射大约650nm和1000nm之间的波长的电磁辐射的装置进行的,其中所述装置还包括可见光源,其允许用户确定电磁辐射在哪里接触 学科。
Abstract:
The present provides amphiphilic block copolymer coated surfaces (e.g., nanoparticles, medical devices, etc.) and methods of preparing such surfaces. In certain embodiments, the present invention provides amphiphilic block copolymer coated single dispersed nanoparticles, which are stable in buffer (e.g., PBS) and have neutral but functionable surfaces, and methods of preparing the same.
Abstract:
The present invention provides methods, compositions, systems, and kits comprising core-satellite nanocomposites useful for photothermal and/or MRI applications (e.g., tumor treatment and/or imaging). In certain embodiments, the core-satellite nanocomposites comprise: i) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core, and ii) at least one satellite component attached to, or absorbed to, the biocompatible coating. In some embodiments, the nanoparticle core and satellite component are composed of near-infrared photothermal agent material and/or MRI contrast agent material. In further embodiments, the satellite component is additionally or alternatively composed of near-infrared optical dye material.
Abstract:
The present invention provides methods, compositions, systems, and kits comprising core-satellite nanocomposites useful for photothermal and/or MRI applications (e.g., tumor treatment and/or imaging). In certain embodiments, the core-satellite nanocomposites comprise: i) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core, and ii) at least one satellite component attached to, or absorbed to, the biocompatible coating. In some embodiments, the nanoparticle core and satellite component are composed of near-infrared photothermal agent material and/or MRI contrast agent material. In further embodiments, the satellite component is additionally or alternatively composed of near-infrared optical dye material.
Abstract:
The present invention provides compositions, systems, and methods employing cleavable polymeric micelles. For example, provided herein are compositions comprising micelles that contain a hydrophobic agent (e.g., metal nanoparticles and/or therapeutic agent), where the micelles are formed from a plurality of amphiphilic polymer molecules that comprise a hydrophilic polymer and a hydrophobic polymer, where the hydrophobic polymer comprises a cleavable Furan-Maleimide adduct. Also provided herein are methods of administering such compositions to a subject and treating a localized area of the subject with a device that emits heat, NIR light, and/or alternating magnetic current such that at least some of the micelles inside the subject near the localized area are disrupted (e.g., releasing a therapeutic agent).
Abstract:
The present invention provides methods, compositions, systems, and kits comprising core-satellite nanocomposites useful for photothermal and/or MRI applications (e.g., tumor treatment and/or imaging). In certain embodiments, the core-satellite nanocomposites comprise: i) a core nanoparticle complex comprising a biocompatible coating surrounding a nanoparticle core, and ii) at least one satellite component attached to, or absorbed to, the biocompatible coating. In some embodiments, the nanoparticle core and satellite component are composed of near-infrared photothermal agent material and/or MRI contrast agent material. In further embodiments, the satellite component is additionally or alternatively composed of near-infrared optical dye material.
Abstract:
The present invention relates to methods, compositions, and kits for generating conjugated gold nanoparticles. In certain embodiments, the present invention provides methods of generating unsaturated conjugated gold nanoparticles by mixing naked gold nanoparticles with a first type of attachment molecules at a molar ratio such that the attachment molecules attach to the naked gold particles at a density level below the saturation level of the naked gold particles (e.g., at a saturation level of 1-99%). In some embodiments, a second type of attachment molecules (e.g., with the opposite charge as the first type of attachment molecules) are mixed with the unsaturated conjugated gold nanoparticles to generate double-conjugated gold nanoparticles (e.g., that are zwitterionic).