摘要:
Negatively charged nanoparticulate compositions are used to deliver therapeutic, prophylactic or diagnostic agents to macrophages or other phagocytic cells in the brain and central nervous system. The negative charge of the nanoparticles increases circulation, increases internalization by macrophage or other phagocytic cells, increases release within the macrophage or other phagocytic cells, or a combination thereof, relative to charge-neutral or charge-positive nanoparticles.
摘要:
An immuno-therapy for treatment of a tumor is provided. An effective dose of a composition containing a low dose of superparamagnetic iron oxide nanoparticle is administered to a tumor. Once the composition has been administered, it is recommended to avoid any means that would cause direct cytotoxic effects to the cancer cells and to normal/healthy tissue. The combination of composition-administered cancer cells with the avoidance of direct cytotoxic effects has been shown to be successful to inhibit the growth of the cancer cells or result in aptosis of the cancer cells. Additional dose(s) can be administered when it is determined that: (i) the tumor starts to grow and/or (ii) the remaining composition falls below a threshold. The immuno-therapy method is a safe, clinically applicable, ready-to-use theranostic approach for cancer patients who are unable to start chemoradiotherapy in a timely manner, i.e. an effective interim or adjunctive treatment for patients.
摘要:
Nanoparticles described as metal-encapsulated carbonaceous dots or M@C-dots are disclosed. Also disclosed are specific M@C-dots with gadolinium, so called Gd@C-dots. These nanoparticles are biologically inert and preclude the release of metal in biological environments. In addition, despite a dimension exceeding the commonly recognized threshold for renal clearance, the disclosed nanoparticles can be efficiently cleared via urine after systematic injection. Methods of making and using such nanoparticles are also disclosed.
摘要:
In one aspect, there is provided a compound comprising an acetylated carboxymethylcellulose (CMC-Ac) covalently linked to: at least one poly(ethylene glycol) (PEG), and at least one hydrophobic drug. In another aspect, a self-assembling nanoparticle composition comprising such compounds is provided.
摘要:
The present invention relates to a magnetic nanoparticle having a Curie temperature which is within a biocompatible temperature range, a method for preparing same, and a nanocomposite and a target substance detection composition comprising the magnetic nanoparticle. As the magnetic nanoparticle of the present invention has a Curie temperature within the temperature range of 0 degrees centigrade to 41 degrees centigrade, the ferromagnetic and paramagnetic properties of the magnetic nanoparticle may be controlled within a biocompatible temperature range at a temperature at which a biological control agent is not destroyed, and the temperature of the magnetic nanoparticle is adjusted to control the magnetic properties thereof such that the properties of the magnetic nanoparticle may be used only when ferromagnetic properties are required, such as in the case of signal amplification in detecting, separating, and delivering biological control agents. Accordingly, the magnetic nanoparticle of the present invention can minimize adverse effects of ferromagnetic properties thereof, and can be used in the effective detection and separation of biological control agents.
摘要:
Provided are iron oxide nanocapsules for an MRI contrast agent having high contrast, in which a plurality of iron oxide nanoparticles having a hydrophobic ligand attached thereto are encapsulated in an encapsulation material including a biodegradable polymer and a surfactant, and which satisfy Relations 1, 2, 3, 4 and 5 below. Also a method of manufacturing the iron oxide nanocapsules is provided. 5≦100*Dμ(IO)/C ω(IO) [Relation 1] 2.5≦100*Dμ(Cap)/C ω(Cap) [Relation 2] 0.5 wt %≦F(IO)≦50 wt % [Relation 3] 1 nm≦Dμ(IO)≦25 nm [Relation 4] 50 nm≦Dμ(Cap)≦200 nm [Relation 5]
摘要:
A medical magnetic resonance tomography apparatus and a contrast agent for magnetic resonance tomography imaging of cavities in a patient are provided. The contrast agent is formed from a highly viscous magnetic resonance contrast agent. The highly viscous magnetic resonance contrast agent includes a substance. A specific magnetic resonance contrast can be generated by the substance.
摘要:
The present invention provides preparations of MSCs with important therapeutic potential. The MSC cells are non-primary cells with an antigen profile comprising less than about 1.25% CD45+ cells (or less than about 0.75% CD45+), at least about 95% CD105+ cells, and at least about 95% CD166+ cells. Optionally, MSCs of the present preparations are isogenic and can be expanded ex vivo and cryopreserved and thawed, yet maintain a stable and uniform phenotype. Methods are taught here of expanding these MSCs to produce a clinical scale therapeutic preparations and medical uses thereof.
摘要:
A vaginal preparation for the diagnosis of human female uterotubal patency and function, comprising particles having a nucleus absorbable by the tissues of the human body, and a coating for the nucleus which is dissolvable and non-absorbable by the tissues of the human body, inert and innocuous, the nucleus comprising at least one marker that can be released by the human body through an organic fluid, the coating being dissolvable and sensitive, for the purpose of the dissolution thereof, to time and/or changes in pH and/or temperature and/or another chemical/physical parameter along the route from the vaginal area to the tubal and pelvic area, the particles having a size, weight and ovoid shape corresponding approximately to those of spermatozoa.
摘要:
The present invention relates to a magnetic nanoparticle having a Curie temperature which is within a biocompatible temperature range, a method for preparing same, and a nanocomposite and a target substance detection composition comprising the magnetic nanoparticle. As the magnetic nanoparticle of the present invention has a Curie temperature within the temperature range of 0 degrees centigrade to 41 degrees centigrade, the ferromagnetic and paramagnetic properties of the magnetic nanoparticle may be controlled within a biocompatible temperature range at a temperature at which a biological control agent is not destroyed, and the temperature of the magnetic nanoparticle is adjusted to control the magnetic properties thereof such that the properties of the magnetic nanoparticle may be used only when ferromagnetic properties are required, such as in the case of signal amplification in detecting, separating, and delivering biological control agents. Accordingly, the magnetic nanoparticle of the present invention can minimize adverse effects of ferromagnetic properties thereof, and can be used in the effective detection and separation of biological control agents.