Abstract:
A method for producing a flat steel product with high reflectivity, in which at least one surface has an arithmetic mean roughness Ra of less than 0.03 μm includes providing a flat steel product, at least one surface of which has an arithmetic mean roughness Ra of less than 2.5 μm. The flat steel product is cold rolled in a plurality of rolling passes. Also a flat steel product with high reflectivity in the finished re-rolled state on at least one of its surface has a low arithmetic mean roughness, a high gloss, and a high directed reflection. A solar concentrator is produced from such a flat steel product.
Abstract:
A method for producing a flat steel product with high reflectivity, in which at least one surface has an arithmetic mean roughness Ra of less than 0.03 μm includes providing a flat steel product, at least one surface of which has an arithmetic mean roughness Ra of less than 2.5 μm. The flat steel product is cold rolled in a plurality of rolling passes. Also a flat steel product with high reflectivity in the finished re-rolled state on at least one of its surface has a low arithmetic mean roughness, a high gloss, and a high directed reflection. A solar concentrator is produced from such a flat steel product.
Abstract:
The invention relates to a method for manufacturing profiled metal strips (1, 1′), in which a metal strip (1, 1′) with predefinable material thickness consisting, in particular, of stainless steel is wound up on a coil (4) and guided through a rolling stand (W1-W4) containing several rolls (2, 3, 2′, 3′), wherein at least the rolls (2, 3) that effectively interact with the metal strip (1, 1′) are provided with a predefinable topography (8, 9), by means of which profiles with profile depths >250 μm can be produced on both sides of the metal strip (1, 1′) depending on the geometry of the topography (8, 9) of the rolls (2, 3), and wherein the metal strip (1, 1′) is subsequent to its profiling wound up on a coil (5) and, if so required, subjected to a thermal post-treatment.