摘要:
A porous activated asphaltene material is described with a method of making and a method of using for the adsorption of a contaminant from a solution. The porous activated asphaltene material may be made by functionalizing solid asphaltene with nitric acid, and then treating the product with a metal hydroxide. The resulting porous activated asphaltene material exhibits a high porosity, and may be cleaned and reused for adsorbing contaminants.
摘要:
A hollow tubular oil absorbing material includes: a core formed by a spring, and an outer shell formed by a flat sponge wrapped at the spring; wherein the flat sponge is fixed at both ends of the spring; the flat sponge fully covers all the spring or is sealed at a first end; a connecting tube is connected at a second end of the spring for communicating with a vacuum pump; a graphene oxide layer is coated at the outer sponge. The graphene oxide layer on the flat sponge of hollow tubular oil absorbing material is formed by immersion and coating under negative pressure. Further the reduction of graphene oxide is performed with hydrazine hydrate steam and followed by washing and drying. Finally, a hollow tubular oil absorbing material with a spring core and an outer grapheme-coated sponge structure is obtained, which can be applied to continuous oil-water separation.
摘要:
Chalcogenide compounds, including ternary and quaternary tin and antimony chalcogenides, for use as absorbents in the remediation of hazardous materials are provided. Also provided are methods for using the chalcogenides in the remediation of ionic and elemental metals from aqueous and non-aqueous fluids.
摘要:
Described herein is a filtration medium comprising a substrate, wherein the substrate comprises a thermolysis product of (i) a carbon substrate having a surface of COxEy, wherein E is selected from at least one of S, Se, and Te; and wherein x and y are greater than 0; and (ii) a metal salt; and methods of removing chloramine from aqueous solutions.
摘要:
A promoted carbon and/or non-carbon base sorbent are described that are highly effective for the removal of mercury from flue gas streams. The promoted sorbent comprises a carbon and/or non-carbon base sorbent that has reacted with and contains forms of halogen and halides. Optional components may be added to increase and/or preserve reactivity and mercury capacity. These may be added directly with the base sorbent, or in-flight within a gas stream (air, flue gas, etc.), to enhance base sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The promoted sorbent can be regenerated and reused. Base sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active base sorbent into the mercury contaminated gas stream are described.
摘要:
A support impregnated with selenium and capable of effectively removing a heavy metal from a process stream that is at an ambient temperature or is at an elevated temperature.
摘要:
Chalcogenide compounds, including ternary and quaternary tin and antimony chalcogenides, for use as absorbents in the remediation of hazardous materials are provided. Also provided are methods for using the chalcogenides in the remediation of ionic and elemental metals from aqueous and non-aqueous fluids.
摘要:
The present invention is an improved filtration system, filtering method and unique chemical composition for capturing mercury and other pollutants in flue gases generated by process gas streams. The improved filtration system may take various forms depending on the type of filter system most desired for a particular application; however, the filter system includes at least a filter element or elements and an adsorbent component having a composition suitable for capturing mercury on the downstream side of the filter element.
摘要:
Agglomerates containing oxides, hydroxides, carbonates and/or basic carbonates of copper, and zinc and/or another element such as aluminum or silicon, are useful for removal of sulphur compounds from fluids, especially under non-reducing conditions. The agglomerates have surface area above 80 m.sup.2.g.sup.-1 and a calcined density below 1.5 g.cm.sup.-3. After ignition, the cupric oxide plus zinc oxide (if any) content of the agglomerates is at least 70% w/w. The proportion of the copper compound is such that the copper atoms constitute 30-97% of the total of the copper, zinc, and said other element atoms in the agglomerates.