Abstract:
There is provided a substrate processing apparatus comprising a liquid amount detecting part configured to detect a liquid amount of a liquid film formed on a substrate; and a coating state detecting part configured to detect a coating state of the substrate with the liquid film formed thereon.
Abstract:
There is provided a substrate processing apparatus comprising a liquid amount detecting part configured to detect a liquid amount of a liquid film formed on a substrate; and a coating state detecting part configured to detect a coating state of the substrate with the liquid film formed thereon.
Abstract:
A substrate transfer apparatus to transfer a circular substrate provided with a cutout at an edge portion thereof, includes: a sensor part including three light source parts applying light to positions different from one another at the edge portion, and three light receiving parts paired with the light source parts; and a drive part for moving the substrate holding part, wherein the three light source parts apply light to the light receiving parts so that whether or not a detection range of the sensor part overlaps with the cutout of the substrate is determined on the basis of an amount of received light by each light receiving part, and when it is determined that there is an overlap at any position, positions of the edge portion of the substrate are further detected with the position of the substrate displaced with respect to the sensor part.
Abstract:
A substrate holder positioning method, capable of positioning a substrate holder without using any positioning jig, includes: measuring a first position of a substrate held on a substrate holder included in a substrate carrying mechanism; carrying the substrate held on the substrate holder to a substrate rotating unit for holding and rotating the substrate; turning the substrate held by the substrate rotating unit through a predetermined angle by the substrate rotating unit; transferring the substrate turned by the substrate rotating unit from the substrate rotating unit to the substrate holder; measuring a second position of the substrate transferred from the substrate rotating unit to the substrate holder; determining the position of the center of rotation of the substrate rotating unit on the basis of the first and the second position; and positioning the substrate holder on the basis of the position of the center of rotation.
Abstract:
There is provided a substrate processing apparatus comprising a liquid amount detecting part configured to detect a liquid amount of a liquid film formed on a substrate; and a coating state detecting part configured to detect a coating state of the substrate with the liquid film formed thereon.
Abstract:
A substrate processing apparatus includes: a cassette block configured to mount a cassette that accommodates a substrate; a processing block configured to process the substrate; a relay block configured to relay the substrate between the cassette block and the processing block; and a controller. The processing block includes a processing module that performs a removal process of removing a part of the substrate. The relay block includes a weight measuring unit that measures a weight of the substrate before or after being processed by the processing block. The controller includes a removal amount determination unit that calculates a weight difference of the substrate before and after being processed by the processing block using the measurement result of the weight measuring unit and determines whether a removal amount by the removal process is within a permissible range.
Abstract:
A liquid processing apparatus of the present disclosure performs a liquid processing by supplying a processing liquid to a substrate that is rotating. A substrate holding unit configured to be rotatable around a vertical axis is provided with a holding surface to attract and hold a bottom surface of the substrate horizontally. A guide unit is formed integrally with the substrate holding unit, disposed around the substrate held in the substrate holding unit, and provided at a position equal to or lower than a height of a top surface of a periphery of the substrate. The guide unit includes a guide surface configured to guide the processing liquid. A rotary cup rotates integrally with the substrate holding unit, and guides the processing liquid towards the cup between the rotary cup and the guide unit.
Abstract:
A substrate transfer apparatus to transfer a circular substrate provided with a cutout at an edge portion thereof, includes: a sensor part including three light source parts applying light to positions different from one another at the edge portion, and three light receiving parts paired with the light source parts; and a drive part for moving the substrate holding part, wherein the three light source parts apply light to the light receiving parts so that whether or not a detection range of the sensor part overlaps with the cutout of the substrate is determined on the basis of an amount of received light by each light receiving part, and when it is determined that there is an overlap at any position, positions of the edge portion of the substrate are further detected with the position of the substrate displaced with respect to the sensor part.
Abstract:
There is provided a technique which can prevent poor processing of successive substrates in the event of a failure of a module or a transport mechanism for transporting a substrate between modules. A substrate processing apparatus includes: a plurality of modules from which a substrate holder of a substrate transport mechanism receives a substrate; a sensor section for detecting a displacement of the holding position of a substrate, held by the substrate holder, from a reference position preset in the substrate holder; and a storage section for storing the displacement, detected when the substrate holder receives a substrate from each of the modules, in a chronological manner for each module. A failure of one of the modules or the substrate transport mechanism is estimated based on the chronological data on the displacement for each module, stored in the storage section. This enables an early detection of a failure or abnormality.