摘要:
In order to provide a composite semipermeable membrane which combines strength and water permeability, the present invention provides a composite semipermeable membrane including: a supporting membrane including a substrate and a porous support; and a separation functional layer disposed on the porous support, in which the substrate has a weight A per unit area, a portion of the porous support which is located within the substrate has a weight B per unit area, and a sum of the weight A and the weight B, (A+B), is 30 to 100 g/m2, and a ratio between the weight A and the weight B, B/A, is 0.10 to 0.60.
摘要:
An object of the present invention is to provide a porous hollow-fiber membrane having high strength while maintaining high pure-water permeation performance. A porous hollow-fiber membrane of the present invention is a porous hollow-fiber membrane including a fluororesin-based polymer, in which the porous hollow-fiber membrane has a columnar texture oriented in a longitudinal direction of the porous hollow-fiber membrane, and a molecular chain of the fluororesin-based polymer is oriented in the longitudinal direction of the porous hollow-fiber membrane.
摘要:
The present invention provides a separation membrane and a separation membrane element which are capable of exhibiting good water production performance and excellent in handleability and process passage. A separation membrane of the present invention is a separation membrane including: a separation membrane main body having a feed-side face and a permeate-side face; and a permeate-side channel member adhered to the permeate-side face of the separation membrane main body, in which the permeate-side channel member includes a composition containing at least a high-crystalline polypropylene (A) and satisfies the following requirements (a) and (b): (a) a content of the high-crystalline polypropylene (A) in the composition is from 40 to 95% by weight; and (b) the permeate-side channel member has a melting endothermic energy amount (ΔH) of from 20 to 70 J/g.
摘要:
An object of the invention is to provide a composite semipermeable membrane which has the high ability to remove substances other than water and high water permeability and which suffers little decrease in performance due to fouling. The invention relates to a composite semipermeable membrane including: a supporting membrane having a substrate and a porous supporting layer disposed on the substrate; and a separation functional layer disposed on the supporting membrane, in which, in any ten sites of cross-sections of the composite semipermeable membrane which have a width of 2.0 μm in a membrane surface direction, the projections having a height of one-fifth or more of a 10-point average surface roughness of the separation functional layer have a standard deviation of height of 60 nm or less.
摘要:
A composite semipermeable membrane includes a porous supporting membrane and a separation functional layer, in which, in cross-sections having a length of 2.0 μm in a membrane surface direction, the average number density of projections in the separation functional layer which have a height of one-fifth or more of the 10-point average surface roughness is 10.0-30.0 projections/μm and the projections have an average height less than 100 nm, and in which a water production rate and a salt rejection are predetermined values or more after an aqueous solution is passed through under certain conditions.
摘要:
A separation membrane, including: a separation membrane main body having at least a base material and a separating functional layer; and a flow path material independently fixed in the thickness direction of the base material, and having a compression elasticity of 0.1-5.0 GPa.
摘要:
The present invention relates to a composite semipermeable membrane including: a supporting membrane including a substrate and a porous supporting layer; and a separation functional layer disposed on the porous supporting layer, in which the separation functional layer includes: a crosslinked polyamide; and a hydrophilic polymer which is a polymer of a monomer having an ethylenically unsaturated group, and a surface of the separation functional layer has a ratio of the number of oxygen atoms to the number of nitrogen atoms (O/N ratio), both determined by X-ray photoelectron spectrometry, of 1.5-10, and a standard deviation of the O/N ratio of 0.15 or larger.
摘要:
The present invention provides a hollow fiber membrane module that can effectively resolve the accumulation of suspended solids within the membrane module, lower running costs, and also operate stably. The present invention relates to a hollow fiber membrane molecule provided with: a cylindrical case having a first end and a second end in the direction of height; a plurality of hollow fiber membranes accommodated within the cylindrical case; and a first potting part accommodated within the cylindrical case and attaching the plurality of hollow fiber membranes together such that the end parts of the plurality of hollow membrane fibers at a first end side of the cylindrical case are open. The hollow fiber membranes are porous hollow fiber membranes having a breaking strength of 23 MPa, and the hollow membrane module has a membrane area per unit volume of 800-3700 m2/m3. The filling fraction for the hollow fiber membranes in a cross-section orthogonal to the direction of height of the cylindrical case is 25-38%.
摘要:
The present invention provides a porous hollow fiber membrane that has both high strength and high pure water permeability, and that exhibits excellent thermal deformation resistance. The present invention is related to a porous hollow fiber membrane containing a fluororesin-based polymer, and a manufacturing method of the membrane comprises a drawing step and a relaxing step. The porous hollow fiber membrane is characterized in that: the molecular chain of the polymer is oriented in the longitudinal direction of the hollow fiber membrane; and at the same time internal distortion of oriented non-crystalline chains, which is disadvantageous in terms of entropy, is alleviated.
摘要:
Provided is a composite semipermeable membrane having a high salt removal rate and a high water permeability. The composite semipermeable membrane comprises a substrate, a porous support layer formed on the substrate, and a separation functional layer formed on the porous support layer, the hydrophilic macromolecule concentration on the substrate-side surface of the porous support layer being higher than that on the separation functional layer-side surface.