Abstract:
A negative electrode active material, a first carbon material, a thickener, and a solvent are mixed to prepare a first dispersion solution. The first dispersion solution and a second carbon material are mixed to prepare a second dispersion solution. The second dispersion solution and a binder are mixed to prepare a negative electrode paint. The negative electrode paint is applied to a surface of a negative electrode current collector and dried to produce a negative electrode for a nonaqueous electrolyte secondary battery. The negative electrode active material has a BET specific surface area of 3 m2/g or more and 8 m2/g or less. The first carbon material has a BET specific surface area of 30 m2/g or more and 100 m2/g or less. The second carbon material has a BET specific surface area of 200 m2/g or more and 500 m2/g or less.
Abstract:
A lithium-ion secondary battery includes at least a negative electrode, a positive electrode, and an electrolyte solution. The negative electrode includes at least negative electrode active material particles. Each of the negative electrode active material particles contains at least a SiOx particle and a Si layer. The Si layer covers a surface of the SiOx particle. The Si layer has a thickness not smaller than 10 nm and not greater than 100 nm. The electrolyte solution contains at least one selected from the group consisting of FEC and VC.
Abstract:
A negative electrode material contains composite particles. Each of the composite particles contains a negative electrode active material particle and a film. The negative electrode active material particle contains a silicon oxide phase and a lithium silicate phase. The film covers a surface of the negative electrode active material particle. The film contains an anion-exchange resin. To an ion-exchange group of the anion-exchange resin, a fluoride ion is bound. The content of the anion-exchange resin in the negative electrode material is not higher than 33 mass %.
Abstract:
A lithium-ion secondary battery includes at least a negative electrode, a positive electrode, and an electrolyte. The negative electrode includes at least a negative electrode active material and a polymer binder. The negative electrode active material includes at least a graphitic material and a silicon oxide material. The amount of acidic functional groups per unit surface area of graphitic material is not lower than 0.017 mmol/m2 and not higher than 0.086 mmol/m2. A polymer binder contains a carboxy group. Polymer binder has a main chain with a length not smaller than 0.53 μm and not greater than 2.13 μm.
Abstract:
A method of producing a lithium ion secondary battery includes preparing a case in which an electrode group including at least a positive electrode and a negative electrode is accommodated; impregnating a first electrolyte solution into the electrode group, lowering a potential of the negative electrode to a first potential, injecting FEC into a case, and lowering a potential of the negative electrode to a second potential. The negative electrode contains at least graphite and silicon oxide. The first electrolyte solution does not contain FEC. An additive has a reductive decomposition potential of 0.5 V (vs. Li+/Li) or more and 1.5 V (vs. Li+/Li) or less. The first potential is higher than 0.2 V (vs. Li+/Li) and is equal to or lower than the reductive decomposition potential. The second potential is 0.2 V (vs. Li+/Li) or less.
Abstract:
A first silicon oxide material and a second silicon oxide material are prepared. A dispersion is prepared by dispersing the first silicon oxide material in an aqueous carboxymethylcellulose solution. A negative electrode composite material slurry is prepared by dispersing the second silicon oxide material and a binder in the dispersion. A negative electrode is produced by applying the negative electrode composite material slurry to a surface of a negative electrode current collector and then performing drying. The binder includes no carboxymethylcellulose. The first silicon oxide material has not been pre-doped with lithium. The second silicon oxide material has been pre-doped with lithium.
Abstract:
Provided is a lithium ion secondary battery which has a low internal resistance in a low-SOC region and a sufficiently large amount of gas generated during overcharge. The lithium ion secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode, and a nonaqueous electrolytic solution. The lithium ion secondary battery further includes a pressure-type safety mechanism. The nonaqueous electrolytic solution includes a gas generating agent. The positive electrode has a positive electrode active material layer including a positive electrode active material. The positive electrode active material includes a lithium transition metal composite oxide represented by LiNiaCobMncO2 wherein a, b and c satisfy the following conditions: 0.35≦a≦0.45, 0.15≦b≦0.25, 0.35≦c≦0.45, and a+b+c=1, and a lithium transition metal composite oxide represented by LiNixCoyMnzO2 wherein x, y and z satisfy the following conditions: 0.35≦x≦0.45, 0.45≦y≦0.55, 0.05≦z≦0.15, and x+y+z=1, and the mass ratio of the oxides is 60:40 to 85:15.
Abstract:
A lithium-ion secondary battery (100) includes a wound electrode body (80), a nonaqueous electrolyte, and a box-shaped case (50). The wound electrode body includes a positive electrode (10), a negative electrode (20), and a separator (40). The box-shaped case contains the wound electrode body and the nonaqueous electrolyte. The wound electrode body includes a starting-end-side negative electrode remainder portion (22) provided in a winding-direction starting end portion (81) of the wound electrode body. The winding-direction starting end portion exists at a winding center side. The starting-end-side negative electrode remainder portion protrudes toward the winding center side along a winding direction beyond the positive electrode. A surplus nonaqueous electrolyte exists in a gap between the wound electrode body and the box-shaped case. The starting-end-side negative electrode remainder portion is positioned in a region where the surplus nonaqueous electrolyte exists, when the lithium-ion secondary battery is disposed in a predetermined posture.
Abstract:
A lithium-ion secondary battery (10) includes a wound electrode assembly (40) having a positive electrode current collector foil (51) and a negative electrode current collector foil 61). An edge portion (52) of the positive electrode current collector foil (51) is exposed in a spiral form at one end of a winding axis (WL). An edge portion (62) of the negative electrode current collector foil (61) is exposed in a spiral form at the other end of the winding axis (WL). The spirally exposed edge portion (52) of the positive electrode current collector foil (51) is divided and gathered into a plurality of parts divided at at least one of a plurality of gaps (S), excluding a central portion (WC) containing the winding axis (WL), provided between wound layers of the positive electrode current collector foil (51) stacked in a direction orthogonal to the winding axis (WL). Likewise, the spirally exposed edge portion (62) of the negative electrode current collector foil (61) is divided and gathered into a plurality of parts divided at at least one of a plurality of gaps (S), excluding the central portion (WC) containing the winding axis (WL), provided between wound layers of the negative electrode current collector foil (61) stacked in a direction orthogonal to the winding axis (WL).
Abstract:
A non-aqueous electrolyte secondary battery includes at least a negative electrode composite material layer. The negative electrode composite material layer includes a negative electrode active material, a conductive material, and a binder. The negative electrode active material includes a silicon oxide material and a graphite material. The negative electrode composite material layer has a BET specific surface area not smaller than 3.5 m2/g and not greater than 5.0 m2/g. In an orthogonal coordinate system having an abscissa representing the elongation of the negative electrode composite material layer and an ordinate representing the electrical resistance of the negative electrode composite material layer, an elongation at a bending point (Cp) in the plot is 12% or higher.