Abstract:
A charge fan assembly is located behind the forward operator cab and draws air from about the top of the PPU and a portion of an airflow from the charge fan assembly is directed downwardly into the crossflow cleaning fan assembly. A pair of closely spaced-apart sheets create a venturi and speed up the charge fan airflow into the crossflow cleaning fan and impact the crossflow cleaning fan at an angle where the blades of the crossflow cleaning fan are widely open. The exhaust air from the crossflow cleaning fan is nearly the same across the entire lengthwise extent of the crossflow cleaning fan.
Abstract:
A rotor and cage assembly includes a skeleton of curved spaced-apart side members affixed to laterally extending upper and lower spaced-apart members therebetween and surrounding the rotor. One of the curved spaced-apart side members is terminated with curved fingers. Three concave inserts insert laterally into the skeleton spanning 270° around the rotor. One of the concave inserts carries straight fingers that interlace between the skeleton side member curved fingers. A control assembly of plates having arcuate slots placed at 3 of the pivots of the skeleton assembly, 3 control bars connected to the skeleton pivots, and an actuator is connected separately to each control bar at one end effect arcuate rotation of the control bars resulting in the synchronized rotation of the arcuate slotted plates so that the interlaced straight fingers move closer together or farther apart with the fixed skeleton assembly curved fingers for different types of grain.
Abstract:
Disclosed is an articulated harvesting combine of a forward power processing unit (PPU) having a forward set of wheel assemblies and a rear grain cart connected by an articulating joint assembly. Bonus sieves assemblies are located in the outer rear of the PPU for accepting grain from concaves and grates assemblies located forward of the bonus sieves assemblies. The bonus sieves assemblies accept tailings from the concaves and grates assemblies for additional separation of grain from material other than grain (MOG). New and separate airflow is provided for the bonus sieves. The bonus sieves tailings are returned to the bonus sieves for rethreshing, optionally after being particulated and air separation performed.
Abstract:
Disclosed is an articulated harvesting combine of a forward power processing unit (PPU) and a rear grain cart, wherein the PPU carries dual axially mounted engines with oppositely opposed crankshafts with one toward the rear grain cart and the other engine away from the rear grain cart, there being no comingling of flywheel output power flow between the two engines.
Abstract:
Disclosed is a complete engine cooling system for an engine carried by a grain harvesting combine having an internal combustion engine and hot exhaust components, and having a front operator cab. The system includes a generally horizontal fan assembly located atop the harvesting combine for drawing in air, a radiator associated with the engine and over which air flows for engine cooling, and charge air coolers for combustion air cooling, and air conditioning and hydraulic coolers, a centrifugal scroll that takes the drawn in air and removes entrained particles to produce a clean exhaust air and dirty exhaust air; and a filter assembly through which the pre-cleaned exhaust air flows for producing filtered air for admittance into the engine for combustion.
Abstract:
An improved grain unloader for unloading grain from a grain storage bin of a grain harvesting combine is terminated by a hood having a lower grain exiting opening terminating the unloader wherein the hood reversibly moves laterally outwardly for directing the trajectory of the grain flowing therefrom. The hood has a lower grain exiting opening terminating the unloader wherein the hood includes an upper stationary slanted wall and a lower extendable hood portion, wherein the upper stationary slanted wall directs the grain downwardly when the hood is retracted and downwardly, and outwardly when the hood is extended. A linear actuator is attached between the hood and the unloader. Drawer slides connect the unloader and the hood for movement of the hood.
Abstract:
Disclosed is an articulated harvesting combine of a forward power processing unit (PPU) having a forward set of wheel assemblies and a rear grain cart connected by an articulating joint assembly. Bonus sieves assemblies are located in the outer rear of the PPU for accepting grain from concaves and grates assemblies located forward of the bonus sieves assemblies. The bonus sieves assemblies accept tailings from the concaves and grates assemblies for additional separation of grain from material other than grain (MOG). New and separate airflow is provided for the bonus sieves. The bonus sieves tailings are returned to the bonus sieves for rethreshing, optionally after being particulated and air separation performed.
Abstract:
Disclosed is a complete engine cooling system for an engine carried by a grain harvesting combine having an internal combustion engine and hot exhaust components, and having a front operator cab. The system includes a generally horizontal fan assembly located atop the harvesting combine for drawing in air, a radiator associated with the engine and over which air flows for engine cooling, and charge air coolers for combustion air cooling, and air conditioning and hydraulic coolers, a centrifugal scroll that takes the drawn in air and removes entrained particles to produce a clean exhaust air and dirty exhaust air; and a filter assembly through which the pre-cleaned exhaust air flows for producing filtered air for admittance into the engine for combustion.
Abstract:
A rotor and cage assembly includes a skeleton of curved spaced-apart side members affixed to laterally extending upper and lower spaced-apart members therebetween and surrounding the rotor. One of the curved spaced-apartside members is terminated with curved fingers. Three concave inserts insert laterally into the skeleton spanning 270° around the rotor. One of the concave inserts carries straight fingers that interlace between the skeleton side member curved fingers. A control assembly of plates having arcuate slots placed at 3 of the pivots of the skeleton assembly, control bars connected to the skeleton pivots, and an actuator connect to the control bars at one end effect arcuate rotation of the control bars resulting in the synchronized rotation of the arcuate slotted plates so that the interlaced straight fingers move closer together or farther apart with the fixed skeleton assembly curved fingers for different types of grain.
Abstract:
Disclosed is an improved articulated combine of a forward grainhead carried by a forward bogey devoid of grain storage and operated by an operator and a rear grain storage bogey. The rear bogey carries a grain unload arm. A diagonal grain auger assembly is disposed within the rear bogey and transfers grain from at least the front area of the rear bogey into the grain unload arm. A grain unload arm assembly is carried by the rear bogey and is composed of a moveable upper grain unload arm and a fixed lower grain unload arm whose proximal end is at a corner of the rear bogey, not at the center which lowers the angle, and which is connected by a slew bearing assembly matable to a rack for rotating. A grain unload auger is disposed within each of the upper grain unload arm and a lower grain unload arm.