摘要:
The present invention relates to a method of fabricating a high-voltage high-power integrated circuit device using a substrate of a SOI structure in which an insulating film and a silicon layer are sequentially stacked on a silicon substrate. The method comprising the steps of sequentially forming an oxide film and a photoresist film on the silicon layer and then performing a photolithography process using a trench mask to pattern the photoresist film; patterning the oxide film using the patterned photoresist film as a mask and then removing the photoresist film remained after the patterning; etching the silicon layer using the patterned oxide film as a mask until the insulating film is exposed to form a trench; forming a nitride film on the entire surface including the trench, performing an annealing process and depositing polysilicon on the entire surface so that the trench is buried; and sequentially removing the polysilicon and the nitride film until the silicon layer is exposed to flatten the surface, thus forming a device isolating film for electrical isolation between devices within the trench. Therefore, the present invention can effectively reduce the isolation area of the trench between the high-voltage high-power device and the logic CMOS device and can easily control the concentration of a deep well.
摘要:
The present invention relates to an input and output port circuit. The input and output port circuit comprises a signal register for storing output signals, an input/output register at which an input/output control signal for determining an input/output direction is stored, a plurality of control registers, a power supply switch circuit for selectively supplying a low voltage or a high voltage depending on a power mode control signal, a signal direction control circuit for determining the direction of the signal depending on a value of the signal register and a value of the input/output register, an output control circuit driven depending on the value of the control register and an output of the signal direction control circuit, and an output driving circuit for outputting the low voltage, the high voltage or the ground value depending on an output of the signal direction control circuit and an output of the output control circuit. The high voltage and the low voltage can be simultaneously driven using only a single output driving circuit and the single output driving circuit is constructed in multiple stages and is selectively driven by the output control register. Therefore, the power consumption can be saved.
摘要:
Provided is a source driver circuit for an active matrix electroluminescent (EL) display including a digital-to-analog converter/ramp circuit for converting a digital signal into an analog signal, and generating a ramp signal in this process, simultaneously, whereby high degree of integration would be possible since a conventional complicated circuit is not required and gray scale with the high characteristic can be implanted, regardless of a change of a temperature or a threshold voltage.
摘要:
Provided is a semiconductor fabrication technology; and, more particularly, to a semiconductor device having a heat release structure that uses a silicon-on-insulator (SOI) substrate, and a method for fabricating the semiconductor device. The device and method of the present research provides a semiconductor device having a high heat-release structure and high heat-release structure, and a fabrication method thereof. In the research, the heat and high-frequency noises that are generated in the integrated circuit are released outside of the substrate through the tunneling region quickly by forming an integrated circuit on a silicon-on-insulator (SOI) substrate, aiid removing a buried insulation layer under the integrated circuit to form a tunneling region. The heat-release efficiency can be enhanced much more, when unevenness is formed on the surfaces of the upper and lower parts of the tunneling region, or when the air or other gases having excellent heat conductivity is flown into the tunneling region.
摘要:
Provided are a multi-gate MOS transistor and a method of manufacturing the same. Two silicon fins are vertically stacked on a silicon on insulator (SOI) substrate, and four side surfaces of an upper silicon fin and three side surfaces of a lower silicon fin are used as a channel. Therefore, a channel width is increased, so that current driving capability of a device is improved, and high performance nano-level semiconductor IC and highly integrated memory IC can be manufactured through the optimization and stability of a process.
摘要:
The present invention relates to structures of a high voltage device and a low voltage device formed on a SOI substrate and a method for manufacturing the same, and it is characterized in which the low voltage device region of silicon device regions in a SOI substrate is higher than the high voltage device region by steps, and a thickness of the silicon device region, where the high voltage device is formed, is equal to a junction depth of impurities of a source and drain in the low voltage device. Accordingly, silicon device regions in the SOI substrate are divided into the high voltage region and the low voltage region and steps are formed there between by oxidation growth method, so that the high voltage device having low junction capacitance can be made, and the low voltage device compatible with the conventional CMOS process and device characteristics can also be made at the same time.
摘要:
The present invention provides an EDMOS (extended drain MOS) device having a lattice type drift region and a method of manufacturing the same. In the case of n channel EDMOS(nEDMOS), the drift region has a lattice structure in which an n lattice having a high concentration and a p lattice having a low concentration are alternately arranged. As a drain voltage is applied, a depletion layer is abruptly extended by a pn junction of the n lattice and the p lattice, so that the entire drift region is easily depleted. Therefore, a breakdown voltage of the device is increased, and an on resistance of the device is decreased due to the n lattice with high concentration.
摘要:
The present invention provides an EDMOS (extended drain MOS) device having a lattice type drift region and a method of manufacturing the same. In the case of n channel EDMOS(nEDMOS), the drift region has a lattice structure in which an n lattice having a high concentration and a p lattice having a low concentration are alternately arranged. As a drain voltage is applied, a depletion layer is abruptly extended by a pn junction of the n lattice and the p lattice, so that the entire drift region is easily depleted. Therefore, a breakdown voltage of the device is increased, and an on resistance of the device is decreased due to the n lattice with high concentration.
摘要:
Provided is a parallel data path architecture for high energy efficiency. In this architecture, a plurality of parallel process units and a plurality of function units of the process units are controlled by instructions and processed in parallel to improve performance. Also, since only necessary process units and function units are enabled, power dissipation is reduced to enhance energy efficiency. Further, by use of a simple instruction format, hardware can be programmed as the parallel data path architecture for high energy efficiency, which satisfies both excellent performance and low power dissipation, thus elevating hardware flexibility.
摘要:
A high-reliability, multi-threshold complementary metal oxide semiconductor (CMOS) latch circuit is presented that uses both low and high threshold inverters. The multi-threshold latch circuit includes: a low threshold forward clock inverter inverting an input-terminal logic state and applying the inverted logic state to an output-terminal logic state when a clock is in a first logic state; and a high threshold backward clock inverter forming a circular latch structure together with the forward clock inverter, and inverting an input-terminal logic state and applying the inverted logic state to an output logic state when the clock is in a second logic state.