Abstract:
There are provided a power supplying apparatus, a method of operating the same, and a solar power generation system including the same. The power supplying apparatus includes: a power supply unit generating a direct current (DC) input signal; a main circuit unit including a plurality of flyback converter circuits connected to the power supply unit to generate a DC output signal; and a control circuit unit controlling an operation of the main circuit unit, wherein the control circuit unit connects the plurality of flyback converter circuits to each other in series or in parallel according to a level of the DC input signal. Therefore, even in the case in which the level of the DC input signal is high, a circuit maybe configured using a circuit device having a low withstand voltage range and damage and deterioration of the circuit device may be prevented.
Abstract:
There is provided an apparatus and method for controlling a switch of a flyback converter for a solar generating system. The apparatus for controlling a switch of a flyback converter for a solar generating system includes: an MPPT controller generating a current command value for a maximum power point tracker of a solar cell module, based on input voltage, input current, and output voltage of the flyback converter; a current controller generating a current control signal for tracking the current command value; an output current command value generator generating the phase and magnitude command value of the output current, based on the phase of the output voltage and the current control signal; and a switch controller controlling the main switch of the flyback converter, based on the phase and magnitude command value of the output current, thereby simplifying a circuit while solving disadvantages of a discontinuous conduction mode and a boundary conduction mode.
Abstract:
There are provided an apparatus and method for charging and discharging a photovoltaic PCS integrated battery applied to a system that includes a first DC/DC converter 110 connected to a solar cell 10, a DC/AC inverter 120, a DC link unit 130 connected in common to output terminals of the first DC/DC converter 110 and the DC/AC inverter 120, and a second DC/DC converter 140 having a bidirectional DC/DC conversion function connected between the DC rink unit 130 and the battery 30. The present invention calculates the amount of photovoltaic power produced by the solar cell 10 based on voltage and current detected in the voltage/current detector 200, determines one of predetermined control modes according to the amount of photovoltaic power and the connection or not of the battery, and controls the first DC/DC converter 110, the second DC/DC converter, and the DC/AC inverter according to the determined control mode.
Abstract:
There is provided a light emitting driver. A light emitting driver according to an aspect of the invention may include: an LED driving section driving a light emitting part according to a detection value of the light emitting part including a plurality of light emitting devices; and a detection section transmitting the detection value to the LED driving section according to a detection voltage corresponding to a magnitude of a driving current flowing through the light emitting part when an output voltage, being applied to the light emitting part, has a value smaller than a predetermined output voltage reference value, and transmitting the detection value to the LED driving section according to a magnitude of the output voltage.
Abstract:
There are provided an apparatus and a method for controlling the power quality of a power generation system. According to the present invention, there is provided an apparatus for controlling the power quality of a power generation system including a DC/AC inverter converting DC voltage into AC voltage and supplying inverter current to a grid, including: a grid voltage phase follower generating a grid signal; a fundamental extractor extracting a magnitude of a fundamental wave of a load current introduced into a non-linear load connected between the DC/AC inverter and the grid; a first calculator subtracting a preset current compensation value from the magnitude of the fundamental wave from the fundamental extractor; and a second calculator generating an inverter current instruction value for the DC/AC inverter by using the output value of the first calculator and the grid signal and the load current from the grid voltage phase follower.
Abstract:
There is provided an apparatus for the anti-islanding of a power conditioning system. The apparatus for the anti-islanding of a power conditioning system according to the present invention is applied to a power conditioning system including a DC/DC converter and a DC/AC inverter in order to transfer power from a solar cell array to a grid. The apparatus for the anti-islanding of a power conditioning system may include an injection signal generator generating an injection signal, an adder generating a final fundamental wave command value, a main controller performing the power control according to the final fundamental wave command value and stopping the operation of the power conditioning system when the level of the detected injection signal has reached the predetermined reference level or more, and an injection signal detector detecting the injection signal included in voltage and providing them to the main controller.
Abstract:
A method for winding a coil on an object, wherein the coil includes a plurality of first coils and a plurality of second coils, may have winding the first coils on an exterior circumferences of the second coils, wherein an outer circumferences of the respective second coil is enclosed and in contact with outer circumference of at least three first coils, and wherein cross-sectional area of the second coil is smaller than that of the first coil, and wherein the outer circumference of the at least three first coils are in contact each other.
Abstract:
There are provided a multi-level converter capable of outputting power having various voltage levels with respect to a single input power supply by using a simple circuit, an inverter having the same, and a solar power supply apparatus having the same. The multi-level converter includes a first buck-boost unit having a first power switch switching an input power supply and outputting a first power having a voltage level varied according to switching of the first power switch; a bypass unit outputting a second power having a voltage level of the input power supply; and a second buck-boost unit having a second power switch switching the input power supply and outputting a third power having a voltage level varied according to switching of the second power switch.
Abstract:
There is provided an even-level inverter, including: a voltage-dividing circuit dividing input DC power into an even number of voltage levels; a plurality of switching devices connected to individual nodes of the voltage-dividing circuit having the even number of voltage levels; and a bidirectional switching device connected to the individual nodes of the voltage-dividing circuit through at least one of the plurality of switching devices and including at least two transistors. According to the present invention, the bidirectional switching device is implemented without a diode to thereby reduce conduction loss caused due to an anti-parallel diode included in the related art bidirectional switching device, and a neutral point of the voltage-dividing circuit is electrically separated from the switching devices to thereby control reactive power.
Abstract:
There are provided a method and an apparatus for generating a current command value for tracking the maximum power point of a solar energy generating system. The apparatus includes: a voltage detector detecting a voltage input into the flyback power converter; a first calculator calculating an output power from the detected input voltage; a second calculator calculating a power variation based on the calculated output power and a voltage variation of the input voltage; and a current command value generator generating a current command value for tracking the maximum power point of the solar cell module from the calculated voltage variation and the calculated power variation. Accordingly, a current command value after calculating an output power may be generated with only a voltage detector, without a current detector, thereby reducing the costs of a solar energy generating system by decreasing the costs for a high-priced current detector, and simplifying circuit.