摘要:
A diagnostic ultrasound system may visualize and display a mechanical index (MI) as a map. The diagnostic ultrasound system may include a calculating unit to calculate an MI at a depth value on an ultrasonic direction axis from an ultrasonic output unit of an ultrasonic transducer, a visualizing unit to visualize a relationship between the calculated MI and the corresponding depth value in the form of a graph to generate an MI map, and a display unit to display the MI map.
摘要:
An ultrasound diagnosis apparatus providing a map of an interest index. The ultrasound diagnosis apparatus includes: a calculating unit for calculating a mechanical index (MI) corresponding to a depth value in a direction in which ultrasound travels from an ultrasound output part of a transmission transducer; a visualization unit for generating an MI map in which a relationship between the calculated MI and the depth value is visualized in the form of a graph; and a display unit for displaying the MI map.
摘要:
An ultrasound imaging device according to exemplary embodiments of the present invention may determine a skewness with respect to an in-phase/quadrature-phase (I/Q) signal in a frequency domain, and may provide a decision logic of a clutter filtering using the skewness. Accordingly, by filtering a clutter signal of the I/Q signal according to the skewness of the I/Q signal, an ultrasonic image may be formed using a signal in which a clutter component is filtered and/or submatrices in which a Doppler component is dominant, and the formed ultrasonic image may be provided to a user.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
A method of correcting ultrasound images, the method including the operations of, by an ultrasound output unit, outputting an ultrasound signal to a target object; obtaining an mechanical index (MI) map indicating a correlation between depth values according to a travel direction of the ultrasound signal, and MI values by the ultrasound signal; and adjusting a gain value of an ultrasound echo signal corresponding to the ultrasound signal by using a reverse MI map that is obtained by reversing the MI map, so as to allow the MI values, which are displayed on the MI map, to be a virtually constant MI value with respect to the depth values.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
A method of correcting ultrasound images, the method including the operations of, by an ultrasound output unit, outputting an ultrasound signal to a target object; obtaining an mechanical index (MI) map indicating a correlation between depth values according to a travel direction of the ultrasound signal, and MI values by the ultrasound signal; and adjusting a gain value of an ultrasound echo signal corresponding to the ultrasound signal by using a reverse MI map that is obtained by reversing the MI map, so as to allow the MI values, which are displayed on the MI map, to be a virtually constant MI value with respect to the depth values.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.
摘要:
An ultrasound scanner is equipped with one or more fuzzy control units that can perform adaptive system parameter optimization anywhere in the system. In one embodiment, an ultrasound system comprises a plurality of ultrasound image generating subsystems configured to generate an ultrasound image, the plurality of ultrasound image generating subsystems including a transmitter subsystem, a receiver subsystem, and an image processing subsystem; and a fuzzy logic controller communicatively coupled with at least one of the plurality of ultrasound imaging generating subsystems. The fuzzy logic controller is configured to receive, from at least one of the plurality of ultrasound imaging generating subsystems, input data including at least one of pixel image data and data for generating pixel image data; to process the input data using a set of inference rules to produce fuzzy output; and to convert the fuzzy output into numerical values or system states for controlling at least one of the transmit subsystem and the receiver subsystem that generate the pixel image data.